Tests of special relativity

Last updated

Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played (and still play) an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, [1] Zhang, [2] Mattingly, [3] Clifford Will, [4] and Roberts/Schleif. [5]

Contents

Special relativity is restricted to flat spacetime, i.e., to all phenomena without significant influence of gravitation. The latter lies in the domain of general relativity and the corresponding tests of general relativity must be considered.

Experiments paving the way to relativity

The predominant theory of light in the 19th century was that of the luminiferous aether, a stationary medium in which light propagates in a manner analogous to the way sound propagates through air. By analogy, it follows that the speed of light is constant in all directions in the aether and is independent of the velocity of the source. Thus an observer moving relative to the aether must measure some sort of "aether wind" even as an observer moving relative to air measures an apparent wind.

First-order experiments

Fizeau experiment, 1851 Fizeau-Mascart2.png
Fizeau experiment, 1851

Beginning with the work of François Arago (1810), a series of optical experiments had been conducted, which should have given a positive result for magnitudes of first order in (i.e., of ) and which thus should have demonstrated the relative motion of the aether. Yet the results were negative. An explanation was provided by Augustin Fresnel (1818) with the introduction of an auxiliary hypothesis, the so-called "dragging coefficient", that is, matter is dragging the aether to a small extent. This coefficient was directly demonstrated by the Fizeau experiment (1851). It was later shown that all first-order optical experiments must give a negative result due to this coefficient. In addition, some electrostatic first-order experiments were conducted, again having negative results. In general, Hendrik Lorentz (1892, 1895) introduced several new auxiliary variables for moving observers, demonstrating why all first-order optical and electrostatic experiments have produced null results. For example, Lorentz proposed a location variable by which electrostatic fields contract in the line of motion and another variable ("local time") by which the time coordinates for moving observers depend on their current location. [1]

Second-order experiments

Michelson-Morley interferometer Michelson-Morley experiment conducted with white light.png
Michelson-Morley interferometer

The stationary aether theory, however, would give positive results when the experiments are precise enough to measure magnitudes of second order in (i.e., of ). Albert A. Michelson conducted the first experiment of this kind in 1881, followed by the more sophisticated Michelson–Morley experiment in 1887. Two rays of light, traveling for some time in different directions were brought to interfere, so that different orientations relative to the aether wind should lead to a displacement of the interference fringes. But the result was negative again. The way out of this dilemma was the proposal by George Francis FitzGerald (1889) and Lorentz (1892) that matter is contracted in the line of motion with respect to the aether (length contraction). That is, the older hypothesis of a contraction of electrostatic fields was extended to intermolecular forces. However, since there was no theoretical reason for that, the contraction hypothesis was considered ad hoc.

Besides the optical Michelson–Morley experiment, its electrodynamic equivalent was also conducted, the Trouton–Noble experiment. By that it should be demonstrated that a moving condenser must be subjected to a torque. In addition, the Experiments of Rayleigh and Brace intended to measure some consequences of length contraction in the laboratory frame, for example the assumption that it would lead to birefringence. Though all of those experiments led to negative results. (The Trouton–Rankine experiment conducted in 1908 also gave a negative result when measuring the influence of length contraction on an electromagnetic coil.) [1]

To explain all experiments conducted before 1904, Lorentz was forced to again expand his theory by introducing the complete Lorentz transformation. Henri Poincaré declared in 1905 that the impossibility of demonstrating absolute motion (principle of relativity) is apparently a law of nature.

Refutations of complete aether drag

Lodge's ether machine. The steel disks were one yard in diameter. White light was split by a beam splitter and ran three times around the apparatus before reuniting to form fringes. Lodge's ether machine DE.svg
Lodge's ether machine. The steel disks were one yard in diameter. White light was split by a beam splitter and ran three times around the apparatus before reuniting to form fringes.

The idea that the aether might be completely dragged within or in the vicinity of Earth, by which the negative aether drift experiments could be explained, was refuted by a variety of experiments.

Lodge expressed the paradoxical situation in which physicists found themselves as follows: "...at no practicable speed does ... matter [have] any appreciable viscous grip upon the ether. Atoms must be able to throw it into vibration, if they are oscillating or revolving at sufficient speed; otherwise they would not emit light or any kind of radiation; but in no case do they appear to drag it along, or to meet with resistance in any uniform motion through it." [6]

Special relativity

Overview

Eventually, Albert Einstein (1905) drew the conclusion that established theories and facts known at that time only form a logical coherent system when the concepts of space and time are subjected to a fundamental revision. For instance:

The result is special relativity theory, which is based on the constancy of the speed of light in all inertial frames of reference and the principle of relativity. Here, the Lorentz transformation is no longer a mere collection of auxiliary hypotheses but reflects a fundamental Lorentz symmetry and forms the basis of successful theories such as Quantum electrodynamics. There is a large number of possible tests of the predictions and the second postulate: [7]

Principle of relativityConstancy of the speed of light Time dilation
Any uniformly moving observer in an inertial frame cannot determine his "absolute" state of motion by a co-moving experimental arrangement.In all inertial frames the measured speed of light is equal in all directions (isotropy), independent of the speed of the source, and cannot be reached by massive bodies.The rate of a clock C (= any periodic process) traveling between two synchronized clocks A and B at rest in an inertial frame is retarded with respect to the two clocks.
Also other relativistic effects such as length contraction, Doppler effect, aberration and the experimental predictions of relativistic theories such as the Standard Model can be measured.

Fundamental experiments

The Kennedy-Thorndike experiment Kennedy-Thorndike experiment DE.svg
The KennedyThorndike experiment

The effects of special relativity can phenomenologically be derived from the following three fundamental experiments: [8]

From these three experiments and by using the Poincaré-Einstein synchronization, the complete Lorentz transformation follows, with being the Lorentz factor: [8]

Besides the derivation of the Lorentz transformation, the combination of these experiments is also important because they can be interpreted in different ways when viewed individually. For example, isotropy experiments such as Michelson-Morley can be seen as a simple consequence of the relativity principle, according to which any inertially moving observer can consider himself as at rest. Therefore, by itself, the MM experiment is compatible to Galilean-invariant theories like emission theory or the complete aether drag hypothesis, which also contain some sort of relativity principle. However, when other experiments that exclude the Galilean-invariant theories are considered (i.e. the Ives–Stilwell experiment, various refutations of emission theories and refutations of complete aether dragging), Lorentz-invariant theories and thus special relativity are the only theories that remain viable.

Constancy of the speed of light

Interferometers, resonators

Michelson-Morley experiment with cryogenic optical resonators of a form such as was used by Muller et al. (2003), see Recent optical resonator experiments MMX with optical resonators.svg
Michelson-Morley experiment with cryogenic optical resonators of a form such as was used by Müller et al. (2003), see Recent optical resonator experiments

Modern variants of Michelson-Morley and Kennedy–Thorndike experiments have been conducted in order to test the isotropy of the speed of light. Contrary to Michelson-Morley, the Kennedy-Thorndike experiments employ different arm lengths, and the evaluations last several months. In that way, the influence of different velocities during Earth's orbit around the Sun can be observed. Laser, maser and optical resonators are used, reducing the possibility of any anisotropy of the speed of light to the 10−17 level. In addition to terrestrial tests, Lunar Laser Ranging Experiments have also been conducted as a variation of the Kennedy-Thorndike-experiment. [4]

Another type of isotropy experiments are the Mössbauer rotor experiments in the 1960s, by which the anisotropy of the Doppler effect on a rotating disc can be observed by using the Mössbauer effect (those experiments can also be utilized to measure time dilation, see below).

No dependence on source velocity or energy

The de Sitter double star experiment, later repeated by Brecher under consideration of the extinction theorem. SitterKonstanz.png
The de Sitter double star experiment, later repeated by Brecher under consideration of the extinction theorem.

Emission theories, according to which the speed of light depends on the velocity of the source, can conceivably explain the negative outcome of aether drift experiments. It wasn't until the mid-1960s that the constancy of the speed of light was definitively shown by experiment, since in 1965, J. G. Fox showed that the effects of the extinction theorem rendered the results of all experiments previous to that time inconclusive, and therefore compatible with both special relativity and emission theory. [9] [10] More recent experiments have definitely ruled out the emission model: the earliest were those of Filippas and Fox (1964), [11] using moving sources of gamma rays, and Alväger et al. (1964), [12] which demonstrated that photons didn't acquire the speed of the high speed decaying mesons which were their source. In addition, the de Sitter double star experiment (1913) was repeated by Brecher (1977) under consideration of the extinction theorem, ruling out a source dependence as well. [13]

Observations of Gamma-ray bursts also demonstrated that the speed of light is independent of the frequency and energy of the light rays. [14]

One-way speed of light

A series of one-way measurements were undertaken, all of them confirming the isotropy of the speed of light. [5] However, only the two-way speed of light (from A to B back to A) can unambiguously be measured, since the one-way speed depends on the definition of simultaneity and therefore on the method of synchronization. The Einstein synchronization convention makes the one-way speed equal to the two-way speed. However, there are many models having isotropic two-way speed of light, in which the one-way speed is anisotropic by choosing different synchronization schemes. They are experimentally equivalent to special relativity because all of these models include effects like time dilation of moving clocks, that compensate any measurable anisotropy. However, of all models having isotropic two-way speed, only special relativity is acceptable for the overwhelming majority of physicists since all other synchronizations are much more complicated, and those other models (such as Lorentz ether theory) are based on extreme and implausible assumptions concerning some dynamical effects, which are aimed at hiding the "preferred frame" from observation.

Isotropy of mass, energy, and space

Li-NMR spectrum of LiCl (1M) in D2O. The sharp, unsplit NMR line of this isotope of lithium is evidence for the isotropy of mass and space. Lithium-7-NMR spectrum of LiCl (1M) in D2O.gif
Li-NMR spectrum of LiCl (1M) in D2O. The sharp, unsplit NMR line of this isotope of lithium is evidence for the isotropy of mass and space.

Clock-comparison experiments (periodic processes and frequencies can be considered as clocks) such as the Hughes–Drever experiments provide stringent tests of Lorentz invariance. They are not restricted to the photon sector as Michelson-Morley but directly determine any anisotropy of mass, energy, or space by measuring the ground state of nuclei. Upper limit of such anisotropies of 10−33 GeV have been provided. Thus these experiments are among the most precise verifications of Lorentz invariance ever conducted. [3] [4]

Time dilation and length contraction

Ives-Stilwell experiment (1938).) Ives-Stilwell experiment.svg
IvesStilwell experiment (1938).)

The transverse Doppler effect and consequently time dilation was directly observed for the first time in the Ives–Stilwell experiment (1938). In modern Ives-Stilwell experiments in heavy ion storage rings using saturated spectroscopy, the maximum measured deviation of time dilation from the relativistic prediction has been limited to ≤ 10−8. Other confirmations of time dilation include Mössbauer rotor experiments in which gamma rays were sent from the middle of a rotating disc to a receiver at the edge of the disc, so that the transverse Doppler effect can be evaluated by means of the Mössbauer effect. By measuring the lifetime of muons in the atmosphere and in particle accelerators, the time dilation of moving particles was also verified. On the other hand, the Hafele–Keating experiment confirmed the resolution of the twin paradox, i.e. that a clock moving from A to B back to A is retarded with respect to the initial clock. However, in this experiment the effects of general relativity also play an essential role.

Direct confirmation of length contraction is hard to achieve in practice since the dimensions of the observed particles are vanishingly small. However, there are indirect confirmations; for example, the behavior of colliding heavy ions can only be explained if their increased density due to Lorentz contraction is considered. Contraction also leads to an increase of the intensity of the Coulomb field perpendicular to the direction of motion, whose effects already have been observed. Consequently, both time dilation and length contraction must be considered when conducting experiments in particle accelerators.

Relativistic momentum and energy

Bucherer's experimental setup for measuring the specific charge e/m of b electrons as a function of their speed v/c. (Cross-section through the axis of a circular capacitor with a beta-source at its center, at an angle a with respect to the magnetic field H) Bucherer expt-en.svg
Bucherer's experimental setup for measuring the specific charge e/m of β electrons as a function of their speed v/c. (Cross-section through the axis of a circular capacitor with a beta-source at its center, at an angle α with respect to the magnetic field H)

Starting with 1901, a series of measurements was conducted aimed at demonstrating the velocity dependence of the mass of electrons. The results actually showed such a dependency but the precision necessary to distinguish between competing theories was disputed for a long time. Eventually, it was possible to definitely rule out all competing models except special relativity.

Today, special relativity's predictions are routinely confirmed in particle accelerators such as the Relativistic Heavy Ion Collider. For example, the increase of relativistic momentum and energy is not only precisely measured but also necessary to understand the behavior of cyclotrons and synchrotrons etc., by which particles are accelerated near to the speed of light.

Sagnac and Fizeau

Original Sagnac interferometer Sagnac-Interferometer.png
Original Sagnac interferometer

Special relativity also predicts that two light rays traveling in opposite directions around a spinning closed path (e.g. a loop) require different flight times to come back to the moving emitter/receiver (this is a consequence of the independence of the speed of light from the velocity of the source, see above). This effect was actually observed and is called the Sagnac effect. Currently, the consideration of this effect is necessary for many experimental setups and for the correct functioning of GPS.

If such experiments are conducted in moving media (e.g. water, or glass optical fiber), it is also necessary to consider Fresnel's dragging coefficient as demonstrated by the Fizeau experiment. Although this effect was initially understood as giving evidence of a nearly stationary aether or a partial aether drag it can easily be explained with special relativity by using the velocity composition law.

Test theories

Several test theories have been developed to assess a possible positive outcome in Lorentz violation experiments by adding certain parameters to the standard equations. These include the Robertson-Mansouri-Sexl framework (RMS) and the Standard-Model Extension (SME). RMS has three testable parameters with respect to length contraction and time dilation. From that, any anisotropy of the speed of light can be assessed. On the other hand, SME includes many Lorentz violation parameters, not only for special relativity, but for the Standard model and General relativity as well; thus it has a much larger number of testable parameters.

Other modern tests

Due to the developments concerning various models of Quantum gravity in recent years, deviations of Lorentz invariance (possibly following from those models) are again the target of experimentalists. Because "local Lorentz invariance" (LLI) also holds in freely falling frames, experiments concerning the weak Equivalence principle belong to this class of tests as well. The outcomes are analyzed by test theories (as mentioned above) like RMS or, more importantly, by SME. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Michelson–Morley experiment</span> 1887 investigation of the speed of light

The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.

<span class="mw-page-title-main">Kennedy–Thorndike experiment</span> Modified form of the Michelson–Morley experiment, testing special relativity

The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the orientation of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the velocity of the apparatus in different inertial frames. It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the Earth moves around the Sun. The first direct confirmation of time dilation was achieved by the Ives–Stilwell experiment. Combining the results of those three experiments, the complete Lorentz transformation can be derived.

Emission theory, also called emitter theory or ballistic theory of light, was a competing theory for the special theory of relativity, explaining the results of the Michelson–Morley experiment of 1887. Emission theories obey the principle of relativity by having no preferred frame for light transmission, but say that light is emitted at speed "c" relative to its source instead of applying the invariance postulate. Thus, emitter theory combines electrodynamics and mechanics with a simple Newtonian theory. Although there are still proponents of this theory outside the scientific mainstream, this theory is considered to be conclusively discredited by most scientists.

The timeline of luminiferous aether or ether as a medium for propagating electromagnetic radiation begins in the 18th century. The aether was assumed to exist for much of the 19th century—until the Michelson–Morley experiment returned its famous null result. Further experiments were in general agreement with Michelson and Morley's result. By the 1920s, most scientists rejected the aether's existence.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations for the experiments' failure which preserved the hypothetical aether's existence.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

The Trouton–Rankine experiment was an experiment designed to measure if the Lorentz–FitzGerald contraction of an object according to one frame produced a measurable effect in the rest frame of the object, so that the ether would act as a "preferred frame". The experiment was first performed by Frederick Thomas Trouton and Alexander Oliver Rankine in 1908.

<span class="mw-page-title-main">Ives–Stilwell experiment</span>

The Ives–Stilwell experiment tested the contribution of relativistic time dilation to the Doppler shift of light. The result was in agreement with the formula for the transverse Doppler effect and was the first direct, quantitative confirmation of the time dilation factor. Since then many Ives–Stilwell type experiments have been performed with increased precision. Together with the Michelson–Morley and Kennedy–Thorndike experiments it forms one of the fundamental tests of special relativity theory. Other tests confirming the relativistic Doppler effect are the Mössbauer rotor experiment and modern Ives–Stilwell experiments.

<span class="mw-page-title-main">Fizeau experiment</span> Experiment measuring the speed of light in moving water

The Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light.

Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity.

When using the term "the speed of light" it is sometimes necessary to make the distinction between its one-way speed and its two-way speed. The "one-way" speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round-trip speed from the source to a mirror and back again to detector. Albert Einstein chose a synchronization convention that made the one-way speed equal to the two-way speed. The constancy of the one-way speed in any given inertial frame is the basis of his special theory of relativity, although all experimentally verifiable predictions of this theory do not depend on that convention.

The experiments of Rayleigh and Brace were aimed to show whether length contraction leads to birefringence or not. They were some of the first optical experiments measuring the relative motion of Earth and the luminiferous aether which were sufficiently precise to detect magnitudes of second order to v/c. The results were negative, which was of great importance for the development of the Lorentz transformation and consequently of the theory of relativity. See also Tests of special relativity.

Criticism of the theory of relativity of Albert Einstein was mainly expressed in the early years after its publication in the early twentieth century, on scientific, pseudoscientific, philosophical, or ideological bases. Though some of these criticisms had the support of reputable scientists, Einstein's theory of relativity is now accepted by the scientific community.

<span class="mw-page-title-main">Hughes–Drever experiment</span>

Hughes–Drever experiments are spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's principle, they are now understood to be an important test of Lorentz invariance. As in Michelson–Morley experiments, the existence of a preferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of the equivalence principle. Thus these experiments concern fundamental aspects of both special and general relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, of protons, neutrons, and electrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity .

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

<span class="mw-page-title-main">Timeline of special relativity and the speed of light</span>

This timeline describes the major developments, both experimental and theoretical, of:

References

  1. 1 2 3 Laub, Jakob (1910). "Über die experimentellen Grundlagen des Relativitätsprinzips". Jahrbuch der Radioaktivität und Elektronik. 7: 405–463.
  2. Zhang, Yuan Zhong (1997). Special Relativity and Its Experimental Foundations . World Scientific. ISBN   978-981-02-2749-4.
  3. 1 2 3 Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Rev. Relativ. 8 (5): 5. arXiv: gr-qc/0502097 . Bibcode:2005LRR.....8....5M. doi:10.12942/lrr-2005-5. PMC   5253993 . PMID   28163649.
  4. 1 2 3 Will, C.M (2005). "Special Relativity: A Centenary Perspective". In T. Damour; O. Darrigol; B. Duplantier; V. Rivasseau (eds.). Poincare Seminar 2005 . Basel: Birkhauser. pp.  33–58. arXiv: gr-qc/0504085 . Bibcode:2006eins.book...33W. doi:10.1007/3-7643-7436-5_2. ISBN   978-3-7643-7435-8. S2CID   17329576.
  5. 1 2 Roberts, T; Schleif, S (2007). Dlugosz, JM (ed.). "What is the experimental basis of Special Relativity?". Usenet Physics FAQ. University of California, Riverside . Retrieved 2010-10-31.
  6. Lodge, Oliver, Sir (1909). The Ether of Space. New York: Harper and Brothers.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. Lämmerzahl, C. (2005). "Special Relativity and Lorentz Invariance". Annalen der Physik. 517 (1): 71–102. Bibcode:2005AnP...517...71L. doi:10.1002/andp.200410127. S2CID   119383407.
  8. 1 2 Robertson, H. P. (1949). "Postulate versus Observation in the Special Theory of Relativity". Reviews of Modern Physics. 21 (3): 378–382. Bibcode:1949RvMP...21..378R. doi: 10.1103/RevModPhys.21.378 .
  9. Fox, J. G. (1965), "Evidence Against Emission Theories", American Journal of Physics, 33 (1): 1–17, Bibcode:1965AmJPh..33....1F, doi:10.1119/1.1971219.
  10. Martínez, Alberto A. (2004), "Ritz, Einstein, and the Emission Hypothesis", Physics in Perspective, 6 (1): 4–28, Bibcode:2004PhP.....6....4M, doi:10.1007/s00016-003-0195-6, S2CID   123043585
  11. Filippas, T.A.; Fox, J.G. (1964). "Velocity of Gamma Rays from a Moving Source". Physical Review. 135 (4B): B1071-1075. Bibcode:1964PhRv..135.1071F. doi:10.1103/PhysRev.135.B1071.
  12. Alväger, T.; Farley, F. J. M.; Kjellman, J.; Wallin, L. (1964), "Test of the second postulate of special relativity in the GeV region", Physics Letters, 12 (3): 260–262, Bibcode:1964PhL....12..260A, doi:10.1016/0031-9163(64)91095-9.
  13. Brecher, K. (1977). "Is the speed of light independent of the velocity of the source". Physical Review Letters. 39 (17): 1051–1054. Bibcode:1977PhRvL..39.1051B. doi:10.1103/PhysRevLett.39.1051.
  14. Fermi LAT Collaboration (2009). "A limit on the variation of the speed of light arising from quantum gravity effects". Nature. 462 (7271): 331–334. arXiv: 0908.1832 . Bibcode:2009Natur.462..331A. doi:10.1038/nature08574. PMID   19865083. S2CID   205218977.