Tetramer assay

Last updated
Tetramer assay
Synonyms Tetramer stain
Purposeuses tetrameric proteins to detect and quantify T cells

A tetramer assay (also known as a tetramer stain) is a procedure that uses tetrameric proteins to detect and quantify T cells that are specific for a given antigen within a blood sample. [1] The tetramers used in the assay are made up of four major histocompatibility complex (MHC) molecules, which are found on the surface of most cells in the body. [2] MHC molecules present peptides to T-cells as a way to communicate the presence of viruses, bacteria, cancerous mutations, or other antigens in a cell. If a T-cell's receptor matches the peptide being presented by an MHC molecule, an immune response is triggered. [3] Thus, MHC tetramers that are bioengineered to present a specific peptide can be used to find T-cells with receptors that match that peptide. The tetramers are labeled with a fluorophore, allowing tetramer-bound T-cells to be analyzed with flow cytometry. [4] Quantification and sorting of T-cells by flow cytometry enables researchers to investigate immune response to viral infection and vaccine administration as well as functionality of antigen-specific T-cells. [5] Generally, if a person's immune system has encountered a pathogen, the individual will possess T cells with specificity toward some peptide on that pathogen. Hence, if a tetramer stain specific for a pathogenic peptide results in a positive signal, this may indicate that the person's immune system has encountered and built a response to that pathogen.[ citation needed ]

Contents

History

This methodology was first published in 1996 by a lab at Stanford University. [6] Previous attempts to quantify antigen-specific T-cells involved the less accurate limiting dilution assay, which estimates numbers of T-cells at 50-500 times below their actual levels. [7] [8] Stains using soluble MHC monomers were also unsuccessful due to the low binding affinity of T-cell receptors and MHC-peptide monomers. MHC tetramers can bind to more than one receptor on the target T-cell, resulting in an increased total binding strength and lower dissociation rates. [5]

Uses

CD8+ T-cells

Tetramer stains usually analyze cytotoxic T lymphocyte (CTL) populations. [9] CTLs are also called CD8+ T-cells, because they have CD8 co-receptors that bind to MHC class I molecules. Most cells in the body express MHC class I molecules, which are responsible for processing intracellular antigens and presenting at the cell's surface. If the peptides being presented by MHC class I molecules are foreign—for example, derived from viral proteins instead of the cell's own proteins—the CTL with a receptor that matches the peptide will destroy the cell. [2] [3] Tetramer stains allow for the visualization, quantification, and sorting of these cells by flow cytometry, which is extremely useful in immunology. T-cell populations can be tracked over the duration of a virus or after the application of a vaccine. Tetramer stains can also be paired with functional assays like ELIspot, which detects the number of cytokine secreting cells in a sample. [9]

MHC Class I Tetramer Construction

An MHC tetramer binding to T-cell receptors (left), and an MHC molecule on the surface of an antigen presenting cell binding to T-cell receptors (right) An MHC tetramer binding to T-cell receptors (left), and an MHC molecule on the surface of an antigen presenting cell binding to T-cell receptors (right).png
An MHC tetramer binding to T-cell receptors (left), and an MHC molecule on the surface of an antigen presenting cell binding to T-cell receptors (right)

MHC tetramer molecules developed in a lab can mimic the antigen presenting complex on cells and bind to T-cells that recognize the antigen. Class I MHC molecules are made up of a polymorphic heavy α-chain associated with an invariant light chain beta-2 microglobulin (β2m). Escherichia coli are used to synthesize the light chain and a shortened version of the heavy chain that includes the biotin 15 amino acid recognition tag. These MHC chains are biotinylated with the enzyme BirA and refolded with the antigenic peptide of interest. Biotin is a small molecule that forms a strong bond with another protein called streptavidin. Fluorophore tagged streptavidin is added to the bioengineered MHC monomers, and the biotin-streptavidin interaction causes four MHC monomers to bind to the streptavidin and create a tetramer. When the tetramers are mixed with a blood sample, they will bind to T-cells expressing the appropriate antigen specific receptor. Any MHC tetramers that are not bound are washed out of the sample before it is analyzed with flow cytometry. [9]

Recent advancements within recombinant MHC molecules have democratised peptide MHC complex formulation and subsequent multimerisation. Highly active formulations of a broad range of MHC class I molecules [10] now allows non-experts users to make their own custom peptide-MHC complexes from day-to-day in any lab without special equipment.[ citation needed ]

CD4+ T-cells

Tetramers that bind to helper T-cells have also been developed. [9] Helper T-cells or CD4+ T-cells express CD4 co-receptors. They bind to class II MHC molecules, which are only expressed in professional antigen-presenting cells like dendritic cells or macrophages. Class II MHC molecules present extracellular antigens, allowing helper T-cells to detect bacteria, [11] fungi, and parasites. [2] Class II MHC tetramer use is becoming more common, but the tetramers are more difficult to create than class I tetramers and the bond between helper T-cells and MHC molecules is even weaker. [9] [12]

Natural Killer T-cells

Natural killer T-cells (NKT cells) can also be visualized with tetramer technology. NKT cells bind to proteins that present lipid or glycolipid antigens. [13] The antigen presenting complex that NKT cells bind to involves CD1 proteins, so tetramers made of CD1 can be used to stain for NKT cells. [9]

Examples

An early application of tetramer technology focused on the cell-mediated immune response to HIV infection. MHC tetramers were developed to present HIV antigens and used to find the percentage of CTLs specific to those HIV antigens in blood samples of infected patients. This was compared to results of cytotoxic assays and plasma RNA viral load to characterize the function of CTLs in HIV infection. The CTLs that bound to tetramers were sorted into ELIspot wells for analysis of cytokine secretion. [14]

Another study utilized MHC tetramer complexes to investigate the effectiveness of an influenza vaccine delivery method. Mice were given subcutaneous and intranasal vaccinations for influenza, and tetramer stains coupled with flow cytometry were used to quantify the CTLs specific to the antigen used in the vaccine. This allowed for comparison of the immune response (the number of T-cells that target a virus) in two different vaccine delivery methods. [15]

Related Research Articles

<span class="mw-page-title-main">Antigen</span> Molecule triggering an immune response (antibody production) in the host

In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.

<span class="mw-page-title-main">Cytotoxic T cell</span> T cell that kills infected, damaged or cancerous cells

A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens (such as viruses or bacteria), or cells that are damaged in other ways.

<span class="mw-page-title-main">Major histocompatibility complex</span> Cell surface proteins, part of the acquired immune system

The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are called MHC molecules.

<span class="mw-page-title-main">Adaptive immune system</span> Subsystem of the immune system

The adaptive immune system, also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates.

Alloimmunity is an immune response to nonself antigens from members of the same species, which are called alloantigens or isoantigens. Two major types of alloantigens are blood group antigens and histocompatibility antigens. In alloimmunity, the body creates antibodies against the alloantigens, attacking transfused blood, allotransplanted tissue, and even the fetus in some cases. Alloimmune (isoimmune) response results in graft rejection, which is manifested as deterioration or complete loss of graft function. In contrast, autoimmunity is an immune response to the self's own antigens. Alloimmunization (isoimmunization) is the process of becoming alloimmune, that is, developing the relevant antibodies for the first time.

Antigen processing, or the cytosolic pathway, is an immunological process that prepares antigens for presentation to special cells of the immune system called T lymphocytes. It is considered to be a stage of antigen presentation pathways. This process involves two distinct pathways for processing of antigens from an organism's own (self) proteins or intracellular pathogens, or from phagocytosed pathogens ; subsequent presentation of these antigens on class I or class II major histocompatibility complex (MHC) molecules is dependent on which pathway is used. Both MHC class I and II are required to bind antigens before they are stably expressed on a cell surface. MHC I antigen presentation typically involves the endogenous pathway of antigen processing, and MHC II antigen presentation involves the exogenous pathway of antigen processing. Cross-presentation involves parts of the exogenous and the endogenous pathways but ultimately involves the latter portion of the endogenous pathway.

<span class="mw-page-title-main">Antigen-presenting cell</span> Cell that displays antigen bound by MHC proteins on its surface

An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T-cells.

<span class="mw-page-title-main">MHC class I</span> Protein of the immune system

MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on platelets, but not on red blood cells. Their function is to display peptide fragments of proteins from within the cell to cytotoxic T cells; this will trigger an immediate response from the immune system against a particular non-self antigen displayed with the help of an MHC class I protein. Because MHC class I molecules present peptides derived from cytosolic proteins, the pathway of MHC class I presentation is often called cytosolic or endogenous pathway.

A tetrameric protein is a protein with a quaternary structure of four subunits (tetrameric). Homotetramers have four identical subunits, and heterotetramers are complexes of different subunits. A tetramer can be assembled as dimer of dimers with two homodimer subunits, or two heterodimer subunits.

<span class="mw-page-title-main">Antigen presentation</span> Vital immune process that is essential for T cell immune response triggering

Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment, now bound to the major histocompatibility complex (MHC), is transported to the surface of the cell, a process known as presentation, where it can be recognized by a T-cell receptor. If there has been an infection with viruses or bacteria, the cell will present an endogenous or exogenous peptide fragment derived from the antigen by MHC molecules. There are two types of MHC molecules which differ in the behaviour of the antigens: MHC class I molecules (MHC-I) bind peptides from the cell cytosol, while peptides generated in the endocytic vesicles after internalisation are bound to MHC class II (MHC-II). Cellular membranes separate these two cellular environments - intracellular and extracellular. Each T cell can only recognize tens to hundreds of copies of a unique sequence of a single peptide among thousands of other peptides presented on the same cell, because an MHC molecule in one cell can bind to quite a large range of peptides. Predicting which antigens will be presented to the immune system by a certain MHC/HLA type is difficult, but the technology involved is improving.

MHC-restricted antigen recognition, or MHC restriction, refers to the fact that a T cell can interact with a self-major histocompatibility complex molecule and a foreign peptide bound to it, but will only respond to the antigen when it is bound to a particular MHC molecule.

<span class="mw-page-title-main">Minor histocompatibility antigen</span>

Minor histocompatibility antigen are peptides presented on the cellular surface of donated organs that are known to give an immunological response in some organ transplants. They cause problems of rejection less frequently than those of the major histocompatibility complex (MHC). Minor histocompatibility antigens (MiHAs) are diverse, short segments of proteins and are referred to as peptides. These peptides are normally around 9-12 amino acids in length and are bound to both the major histocompatibility complex (MHC) class I and class II proteins. Peptide sequences can differ among individuals and these differences arise from SNPs in the coding region of genes, gene deletions, frameshift mutations, or insertions. About a third of the characterized MiHAs come from the Y chromosome. Prior to becoming a short peptide sequence, the proteins expressed by these polymorphic or diverse genes need to be digested in the proteasome into shorter peptides. These endogenous or self peptides are then transported into the endoplasmic reticulum with a peptide transporter pump called TAP where they encounter and bind to the MHC class I molecule. This contrasts with MHC class II molecules's antigens which are peptides derived from phagocytosis/endocytosis and molecular degradation of non-self entities' proteins, usually by antigen-presenting cells. MiHA antigens are either ubiquitously expressed in most tissue like skin and intestines or restrictively expressed in the immune cells.

<span class="mw-page-title-main">Trogocytosis</span>

Trogocytosis is when a cell nibbles another cell. It is a process whereby lymphocytes conjugated to antigen-presenting cells extract surface molecules from these cells and express them on their own surface. The molecular reorganization occurring at the interface between the lymphocyte and the antigen-presenting cell during conjugation is also called "immunological synapse".

The Streptamer technology allows the reversible isolation and staining of antigen-specific T cells. This technology combines a current T cell isolation method with the Strep-tag technology. In principle, the T cells are separated by establishing a specific interaction between the T cell of interest and a molecule that is conjugated to a marker, which enables the isolation. The reversibility of this interaction and the low temperatures at which it is performed allows for the isolation and characterization of functional T cells. Because T cells remain phenotypically and functionally indistinguishable from untreated cells, this method offers modern strategies in clinical and basic T cell research.

Within the scientific discipline of toxicology, Cytotoxic T lymphocytes (CTLs) are generated by immune activation of cytotoxic T cells (Tc cells). They are generally CD8+, which makes them MHC class I restricted. CTLs are able to eliminate most cells in the body since most nucleated cells express class I MHC molecules. The CTL-mediated immune system can be divided into two phases. In the first phase, functional effector CTLs are generated from naive Tc cells through activation and differentiation. In the second phase, affector CTLs destroy target cells by recognizing the antigen-MHC class I complex.

Immunoevasins are proteins expressed by some viruses that enable the virus to evade immune recognition by interfering with MHC I complexes in the infected cell, therefore blocking the recognition of viral protein fragments by CD8+ cytotoxic T lymphocytes. Less frequently, MHC II antigen presentation and induced-self molecules may also be targeted. Some viral immunoevasins block peptide entry into the endoplasmic reticulum (ER) by targeting the TAP transporters. Immunoevasins are particularly abundant in viruses that are capable of establishing long-term infections of the host, such as herpesviruses.

MHC multimers are oligomeric forms of MHC molecules, designed to identify and isolate T-cells with high affinity to specific antigens amid a large group of unrelated T-cells. Multimers generally range in size from dimers to octamers; however, some companies use even higher quantities of MHC per multimer. Multimers may be used to display class 1 MHC, class 2 MHC, or nonclassical molecules from species such as monkeys, mice, and humans.

Immudex is a Danish Reagents and Diagnostics company established in 2009. The company is operating from offices located in Copenhagen, Denmark, and in Fairfax, Virginia. Immudex specializes in the production of MHC Dextramers. MHC Dextramers are chemical reagents that are designed to detect antigen-specific T cells.

Immunodominance is the immunological phenomenon in which immune responses are mounted against only a few of the antigenic peptides out of the many produced. That is, despite multiple allelic variations of MHC molecules and multiple peptides presented on antigen presenting cells, the immune response is skewed to only specific combinations of the two. Immunodominance is evident for both antibody-mediated immunity and cell-mediated immunity. Epitopes that are not targeted or targeted to a lower degree during an immune response are known as subdominant epitopes. The impact of immunodominance is immunodomination, where immunodominant epitopes will curtail immune responses against non-dominant epitopes. Antigen-presenting cells such as dendritic cells, can have up to six different types of MHC molecules for antigen presentation. There is a potential for generation of hundreds to thousands of different peptides from the proteins of pathogens. Yet, the effector cell population that is reactive against the pathogen is dominated by cells that recognize only a certain class of MHC bound to only certain pathogen-derived peptides presented by that MHC class. Antigens from a particular pathogen can be of variable immunogenicity, with the antigen that stimulates the strongest response being the immunodominant one. The different levels of immunogenicity amongst antigens forms what is known as dominance hierarchy.

<span class="mw-page-title-main">Vincenzo Cerundolo</span> Italian medical researcher (1959–2020)

Vincenzo Cerundolo was the Director of the Medical Research Council (MRC) Human Immunology Unit at the University of Oxford, at the John Radcliffe Hospital and a Professor of Immunology at the University of Oxford. He was also a Supernumerary Fellow at Merton College, Oxford. He was known for his discoveries in processing and presentation of cancer and viral peptides to T cells and lipids to invariant NKT cells. Cerundolo died of lung cancer on 7 January 2020.

References

  1. "Tetramer Staining Guide". Mblintl.com. 2019.
  2. 1 2 3 "Major Histocompatibility Complex". InterPro. European Bioinformatics Institute (EMBL-EBI). Retrieved 2018-12-02.
  3. 1 2 "The Adaptive Immune Response: T lymphocytes and Their Functional Types". Anatomy and Physiology II. Lumen Learning. Retrieved 2018-12-02.
  4. "MHC Tetramers". Medical and Biological Laboratories Co, Ltd (MBL). Retrieved 2018-12-02.
  5. 1 2 "MHC Tetramer Technology—Note 7.2". Thermo Fisher Scientific. Retrieved 2018-12-02.
  6. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (July 2011). "Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996. 274: 94-96". Journal of Immunology. 187 (1): 7–9. JSTOR   2891862. PMID   21690331.
  7. Kimball JW. "Limiting Dilution Analysis". Kimball's Biology Pages. The Saylor Foundation. Retrieved 2018-12-02.
  8. McMichael AJ, O'Callaghan CA (May 1998). "A new look at T cells". The Journal of Experimental Medicine. 187 (9): 1367–71. doi:10.1084/jem.187.9.1367. PMC   2212275 . PMID   9565629.
  9. 1 2 3 4 5 6 Sims S, Willberg C, Klenerman P (July 2010). "MHC-peptide tetramers for the analysis of antigen-specific T cells". Expert Review of Vaccines. 9 (7): 765–74. doi:10.1586/erv.10.66. PMID   20624049. S2CID   20822684.
  10. "DIY - MHC class I Tetramers". immunAware.com. 2019.
  11. Monnot GC, Wegrecki M, Cheng TY, Chen YL, Sallee BN, Chakravarthy R, Karantza IM, Tin SY, Khaleel AE, Monga I, Uwakwe LN, Tillman A, Cheng B, Youssef S, Ng SW, Shahine A, Garcia-Vilas JA, Uhlemann AC, Bordone LA, Han A, Rohde CH, Ogg G, Moody DB, Rossjohn J, de Jong A (January 2023). "Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a". Nature Immunology. 24 (1): 110–122. doi:10.1038/s41590-022-01375-z. PMID   35265979. S2CID   255039948.
  12. James EA, LaFond R, Durinovic-Bello I, Kwok W (March 2009). "Visualizing antigen specific CD4+ T cells using MHC class II tetramers". Journal of Visualized Experiments (25). doi:10.3791/1167. PMC   2789100 . PMID   19270641.
  13. Shekhar S, Joyee AG, Yang X (2014). "Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections?". Journal of Innate Immunity. 6 (5): 575–84. doi:10.1159/000361048. PMC   6741619 . PMID   24903638.
  14. Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, Segal JP, Cao Y, Rowland-Jones SL, Cerundolo V, Hurley A, Markowitz M, Ho DD, Nixon DF, McMichael AJ (March 1998). "Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA". Science. 279 (5359): 2103–6. Bibcode:1998Sci...279.2103O. doi:10.1126/science.279.5359.2103. PMID   9516110.
  15. Si Y, Wen Y, Kelly SH, Chong AS, Collier JH (July 2018). "+ T cell responses". Journal of Controlled Release. 282: 120–130. doi:10.1016/j.jconrel.2018.04.031. PMC   6309200 . PMID   29673645.

Further reading