Theseus (AUV)

Last updated

Theseus is a large autonomous underwater vehicle (AUV) designed for laying fibre-optic cable on the seafloor.

Contents

Theseus AUV.jpg

History

In 1987, the Canadian government released a long-awaited white paper on defence; [1] one of the key points in this paper was Canada's commitment to maintaining sovereignty over its Arctic waters, through both the acquisition of nuclear submarines and advances in passive subsea surveillance techniques.

Project Spinnaker was a defence research project initiated to develop the technologies needed to deploy acoustic listening posts on the seafloor in Canada's Arctic Archipelago. These arrays needed to be deployed in deep waters on the edge of the Continental Shelf; since these waters were ice-covered year round, a novel solution was needed to lay trunk cables from on-shore data processing centres out to the arrays.

Project Spinnaker was the brainchild of the Defense Research Establishment Pacific (DREP), a defence research laboratory specializing in Arctic acoustics. To help solve the cable-laying problem, DREP turned to International Submarine Engineering Ltd, of Port Coquitlam, BC.

Feasibility studies began in 1988, using ISE's ARCS AUV as a test platform. In 1990, ARCS autonomously laid fibre-optic cable on the seafloor off Port Moody, BC, validating the concept of using an AUV to lay cable.

Design of the Theseus AUV began in 1991, with construction following from 1993 to 1994. Theseus began sea trials in the summer of 1994 and was deployed to the Arctic in the spring of 1995 and the spring of 1996.

Operation

Theseus was first deployed to the Arctic in the spring of 1995 to validate transportation logistics, confirm vehicle operations, and to develop cable delivery and recovery techniques. At ISE's headquarters in Port Coquitlam, Theseus was broken down into modular sections, flown to CFS Alert in C-130 Hercules aircraft, then slung by helicopter out to Jolliffe Bay where it was re-assembled under a large heated tent. A large ice hole, 40’ x 5’ was cut through the 6-foot-thick ice cover, and Theseus was launched and recovered horizontally, performing several under-ice test missions.

In the spring of 1996, Theseus was deployed back to Jolliffe Bay for a full-length cable-laying mission in support of Project Spinnaker. An acoustic array was deployed on the seafloor on the edge of the Continental Shelf approximately 180 kilometres from shore, and Theseus successfully delivered the cable to the array after just over 24 hours of running. Theseus was then commanded to return to Jolliffe Bay, which it did.

A second cable laying mission was also performed, out to another array. This mission was not successful, as the trunk cable broke half-way into the mission. However, Theseus completed the cable delivery maneuvers and was subsequently sent on its way back to Jolliffe Bay.

Construction

Hull

The overall hull was 10.7m long (35 feet), a diameter of 1.27m (50 inches), with a displacement of 8600 kg (19,000 lbs). It was designed in a modular fashion, so it could be broken down for transport by helicopter or Twin Otter aircraft.

The bow section was free-flooding and contained the obstacle avoidance sonar, forward variable ballast tank/pump, acoustic telemetry transducer, and strobe lights.

The pressure hull consisted of 6 modular hull sections, and contained the batteries, electronics, and dry sensors.

The payload bay contained the fibre-optic cable packs.

The tail section housed the aft variable ballast tank/pump and thruster.

Six electrically operated dive planes (2 at the bow, 4 at the stern) provide control and stability in the pitch, roll, and yaw axes.

Propulsion

A single, 61 cm propeller was driven by a 6 hp brushless DC motor and gearbox. This allowed for operation at a nominal speed of 2 m/s (4 knots).

Theseus navigated using a hybrid inertial/acoustic positioning system. [2] For dead-reckoned positioning from the launch ice hole, a Honeywell MAPS Ring Laser gyro was loosely coupled with an EDO 3050 Doppler Velocity Log, providing a position accuracy of approximately 0.5% of distance travelled.

For mid-mission course correction and terminal guidance for cable delivery, a Datasonics ACU-206 acoustic positioning system was operated in an inverted USBL mode to measure range and bearing to ORE 6701 low-frequency acoustic transponders deployed at key locations along the mission route.

Obstacle Avoidance

A Sonatech STA-013-1 TOAS obstacle detection sonar was mounted in the bow of the vehicle, providing a ±25° horizontal x ±9° high field of view to detect ice keels and bottom obstacles out to a range of 180 metres. Detection and avoidance control software was not completed in time for the cable laying mission, so for the outbound mission, a manual obstacle avoidance control function was available (but never used) over the fibre-optic cable.

Control

The onboard mission computer was a Gespac-based MC68030 processor running Proteus, a proprietary real-time kernel. The mission-specific application software was written in C++ with a layered architecture and subsumption, cooperation, and supervision hierarchy.

Payload

A dedicated hull section contained 11 spools of fibre-optic cable spliced together providing 220 km of cable available for dispensing. Each spool was surrounded by a toroidal buoyancy compensation tank that was filled as cable was dispensed.

Energy

Theseus was powered by Yardney silver-zinc secondary cells; 280 individual cells arranged in 6 battery boxes and providing 360 kWh, enough for a 450 km mission and 24 additional hours of hotel load (and a safety factor of 1.25).

Communications

Four modes are available for communications between the Theseus onboard computer system and an operator console, depending on the operations mode:

Related Research Articles

<span class="mw-page-title-main">Sonar</span> Acoustic sensing method

Sonar is a technique that uses sound propagation to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.

<span class="mw-page-title-main">Side-scan sonar</span> Tool for seafloor mapping

Side-scan sonar is a category of sonar system that is used to efficiently create an image of large areas of the sea floor.

<span class="mw-page-title-main">Canada in the Cold War</span>

Canada in the Cold War was one of the western powers playing a central role in the major alliances. It was an ally of the United States, but there were several foreign policy differences between the two countries over the course of the Cold War.

<span class="mw-page-title-main">Autonomous underwater vehicle</span> Unmanned underwater vehicle with autonomous guidance system

An autonomous underwater vehicle (AUV) is a robot that travels underwater without requiring continuous input from an operator. AUVs constitute part of a larger group of undersea systems known as unmanned underwater vehicles, a classification that includes non-autonomous remotely operated underwater vehicles (ROVs) – controlled and powered from the surface by an operator/pilot via an umbilical or using remote control. In military applications an AUV is more often referred to as an unmanned undersea vehicle (UUV). Underwater gliders are a subclass of AUVs.

<span class="mw-page-title-main">Monterey Bay Aquarium Research Institute</span> American oceanographic research institute

The Monterey Bay Aquarium Research Institute (MBARI) is a private, non-profit oceanographic research center in Moss Landing, California. MBARI was founded in 1987 by David Packard, and is primarily funded by the David and Lucile Packard Foundation. Christopher Scholin serves as the institute's president and chief executive officer, managing a work force of approximately 220 scientists, engineers, and operations and administrative staff.

<span class="mw-page-title-main">Unmanned underwater vehicle</span> Submersible vehicles that can operate underwater without a human occupant

Unmanned underwater vehicles (UUV), sometimes known as underwater drones, are submersible vehicles that can operate underwater without a human occupant. These vehicles may be divided into two categories: remotely operated underwater vehicles (ROUVs) and autonomous underwater vehicles (AUVs). ROUVs are remotely controlled by a human operator. AUVs are automated and operate independently of direct human input.

RV <i>Roger Revelle</i>

R/V Roger Revelle is a Thomas G. Thompson-class oceanographic research ship operated by Scripps Institution of Oceanography under charter agreement with Office of Naval Research as part of the University-National Oceanographic Laboratory System (UNOLS) fleet. The ship is named after Roger Randall Dougan Revelle, who was essential to the incorporation of Scripps into the University of California San Diego.

<span class="mw-page-title-main">Multibeam echosounder</span> Type of sonar used to map the seabed

A multibeam echosounder (MBES) is a type of sonar that is used to map the seabed. It emits acoustic waves in a fan shape beneath its transceiver. The time it takes for the sound waves to reflect off the seabed and return to the receiver is used to calculate the water depth. Unlike other sonars and echo sounders, MBES uses beamforming to extract directional information from the returning soundwaves, producing a swathe of depth soundings from a single ping.

Geophysical MASINT is a branch of Measurement and Signature Intelligence (MASINT) that involves phenomena transmitted through the earth and manmade structures including emitted or reflected sounds, pressure waves, vibrations, and magnetic field or ionosphere disturbances.

<span class="mw-page-title-main">Ocean Observatories Initiative</span> Network of ocean observatories

The Ocean Observatories Initiative (OOI) is a National Science Foundation (NSF) Major Research Facility composed of a network of science-driven ocean observing platforms and sensors in the Atlantic and Pacific Oceans. This networked infrastructure measures physical, chemical, geological, and biological variables from the seafloor to the sea surface and overlying atmosphere, providing an integrated data collection system on coastal, regional and global scales. OOI's goal is to deliver data and data products for a 25-year-plus time period, enabling a better understanding of ocean environments and critical ocean issues.

Explorer autonomous underwater vehicle (AUV) is a Chinese AUV developed in the People's Republic of China (PRC), first entering service in November 1994. It should not be confused with another two Anglo-American AUVs that share the same name: the American Autonomous Benthic Explorer AUV (ABE) built by Woods Hole Oceanographic Institution, and the British Columbia-based International Submarine Engineering built Canadian Explorer AUV, which is based on its earlier ARCS AUV. Many Chinese AUVs later developed, such as Wukong, WZODA, CR series, Exploration series, Micro Dragon series, Sea Whale series, Submerged Dragon series AUVs, are all based on experienced gained from Explorer AUV.

USNS <i>Zeus</i> United States Navy cable ship built in 1984

USNS Zeus (T-ARC-7) is the first cable ship specifically built for the United States Navy. Though planned to be the first of two ships of her class, the second ship was not built, leaving Zeus as the only ship of her class. She is capable of laying 1,000 miles (1,600 km) of cable at depths of up to 9,000 feet (2,700 m).

NOAAS <i>Reuben Lasker</i> American fisheries research vessel

NOAAS Reuben Lasker is a National Oceanic and Atmospheric Administration (NOAA) fishery research vessel. The ship's namesake, Reuben Lasker, was a fisheries biologist who served with the Southwest Fisheries Center, National Marine Fisheries Service, and taught at the Scripps Institution of Oceanography.

Seafox drone Remotely operated anti-mine marine drone

The SeaFox is an anti-mine Unmanned underwater vehicle (UUV) manufactured by German company Atlas Elektronik. It is designed to locate and destroy ground and moored mines. There are three versions, including a training version. The orange SeaFox-I "inspection" variant has sonar and an Inertial navigation system, and the black SeaFox-C "combat" round also has a 1.4 kilograms (3.1 lb) shaped charge warhead. The system is in service with eleven navies. The SeaFox is an advanced design of an Expendable Mine Disposal Vehicle or EMDV. It has a low life cycle cost as it has low running and replacement costs. Its main targets are sea mines that pose a danger to vessels. It communicates with the ship via a fiber-optic cable. The SeaFox uses a custom launch and retrieval system, that may be fitted to a variety of ships, boats or even helicopters. It can be used for a range of tasks such as conduct damage estimation, route surveys, maritime boundary control, intelligence and harbor surveillance missions.

<span class="mw-page-title-main">European Multidisciplinary Seafloor and water column Observatory</span> Large-scale European distributed Research Infrastructure for ocean observation

European Multidisciplinary Seafloor and water-column Observatory (EMSO) is a large-scale European distributed Research Infrastructure for ocean observation, enabling real-time interactive long term monitoring of ocean processes. EMSO allows study of the interaction between the geosphere, the biosphere, the hydrosphere, and the lithosphere; including natural hazards, climate change, and marine ecosystems. EMSO nodes have been deployed at key sites in European seas, starting from the Arctic, through the Atlantic and Mediterranean, to the Black Sea.

<span class="mw-page-title-main">Regional Scale Nodes</span> Electro-optically cabled underwater observatory that directly connects to the global Internet

The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) Regional Scale Nodes (RSN) component is an electro-optically cabled underwater observatory that directly connects to the global Internet. It is the largest cable-linked seabed observatory in the world, and also the first of its kind in the United States.

RSV <i>Nuyina</i> Australian icebreaking research vessel

RSVNuyina is an icebreaking research and supply vessel intended to support Australian scientific activities and research bases in Antarctica. Capable of deploying a wide range of vehicles, including helicopters, landing barges and amphibious trucks to support the resupply operation, the new ship provides a modern platform for marine science research in both sea ice and open water with a large moon pool for launching and retrieving sampling equipment and remotely operated vehicles.

Hadal 1 ARV is a type of very little known unmanned underwater vehicle (UUV) built in the People's Republic of China (PRC). ARV stands for Autonomous Remotely-controlled Vehicle, an idea pioneered in China by Shenyang Institute of Automation (SIA) of Chinese Academy of Sciences (CAS), and SIA is also the developer of Hadal 1 ARV, and its predecessor Hadal ARV, as well as Arctic ARV, the predecessor of Hadal ARV. Hadal 1 and its predecessor Hadal, and earlier Arctic series ARVs are the Chinese counterparts of Nereus hybrid unmanned underwater vehicle (UUV), because just like Nereus hybrid UUV, these ARVs can operate both as a AUV or a ROUV. The general designer of Hadal 1 ARV is Mr. Tang Yuan-Gui (唐元贵).

<span class="mw-page-title-main">Underwater survey</span> Inspection or measurement in or of an underwater environment

An underwater survey is a survey performed in an underwater environment or conducted remotely on an underwater object or region. Survey can have several meanings. The word originates in Medieval Latin with meanings of looking over and detailed study of a subject. One meaning is the accurate measurement of a geographical region, usually with the intention of plotting the positions of features as a scale map of the region. This meaning is often used in scientific contexts, and also in civil engineering and mineral extraction. Another meaning, often used in a civil, structural, or marine engineering context, is the inspection of a structure or vessel to compare actual condition with the specified nominal condition, usually with the purpose of reporting on the actual condition and compliance with, or deviations from, the nominal condition, for quality control, damage assessment, valuation, insurance, maintenance, and similar purposes. In other contexts it can mean inspection of a region to establish presence and distribution of specified content, such as living organisms, either to establish a baseline, or to compare with a baseline.

Autonomous Benthic Explorer (ABE) was a pioneering autonomous underwater vehicle (AUV) owned and operated by Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts. ABE was designed to perform wide-area seabed surveys at depths of up to 4500m (14,674ft) and completed 222 missions from 1996 until it was lost at sea in 2010. ABE pioneered the use of a relatively simple AUV to perform wide area surveys, identify points of interest, and “scout” for a more sophisticated manned vehicle or ROV.

References

  1. "Information archivée dans le Web" (PDF).
  2. Butler, Bruce; Verrall, Ron (2001-03-01). "Precision Hybrid Inertial/Acoustic Navigation System for a Long-Range Autonomous Underwater Vehicle". Navigation: Journal of the Institute of Navigation. 48 (1): 1–12. doi:10.1002/j.2161-4296.2001.tb00223.x. ISSN   2161-4296 . Retrieved 2023-07-03.