Thlaspi arvense

Last updated

Thlaspi arvense
Thlaspi arvense.jpeg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Brassicales
Family: Brassicaceae
Genus: Thlaspi
Species:
T. arvense
Binomial name
Thlaspi arvense
L.

Thlaspi arvense, known by the common name field pennycress, [1] is a flowering plant in the cabbage family Brassicaceae. It is native to Eurasia, and is a common weed throughout much of North America and its home.

Contents

Description

Thlaspi arvense is a foetid, hairless annual plant, growing up to 60 cm (24 in) tall, [2] with upright branches. The stem leaves are arrow-shaped, narrow and toothed. It blooms between May and July, with racemes or spikes of small white flowers that have 4 sepals and 4 longer petals. [3] Later it has round, flat, winged pods with a deep apical notch, [2] :141 measuring 1 cm (0.39 in) across. They contain small brown-black seeds. [3]

The common name 'pennycress' is derived from the shape of the seeds looking like an old English penny. [3] Other English common names are: stinkweed, bastard cress, fanweed, field pennycress, frenchweed and mithridate mustard. Pennycress is an annual, overwintering herb with an unpleasant odor when its leaves are squeezed. It grows up to 40 to 80 cm depending on environmental conditions. White, lavender or pink flowers with four petals develop between five and eight seeds. Numbers of chromosomes is 2x. [4] Pennycress, has flat and circular notched pods. Its seeds have a high oil content and the species has gained interest as a potential feedstock for biofuel production.

Morphology

Pennycress is planted and germinates in the fall and overwinters as a small rosette. [5] The central stem and upper side stems terminate in erect racemes of small white flowers. Flowers are self-pollinated and produce a penny sized, heart-shaped, flat seed pod with up to 14 seeds. Each dark brown seed is oval-shaped and slightly larger than a camelina seed ( Camelina sativa ). [6] Pennycress grows as a winter annual across much of the Midwestern US and the world. [5]

Distribution

The field pennycress is native to the temperate regions of Eurasia, in many of which it is an archaeophyte (an ancient introduction). It has been naturalised to North America, and so can be regarded as having a circumpolar distribution. [7]

It is found throughout Europe (it is missing from Iceland, the Faroese and Svalbard, relatively rarer in the Arctic and the Mediterranean mainlands, and absent from Portugal and the Mediterranean islands). [8] [9] Its area then extends through the Greater Caucasus, the Armenian Highlands, northwestern Iran, Kazakhstan, southern Siberia and up to the Pacific coast of Khabarovsk and Primorsky Krai, the Altai, Tian Shan and Pamir mountains, Korea and the Japanese Archipelago, [10] all but the southeasternmost provinces of China, [11] the mountains in the north of South Asia [10] (in parts of Nepal at 2000–4600 m, [12] in Indian Jammu and Kashmir and Ladakh, in Pakistan's Chitral, Hazara, Kurram Valley, and as far south as Rawalpindi District), [13] and Ethiopia. [10]

It has also been introduced to Australia and the Americas. [11] In the northern parts of the United States, its habitats include cropland, fallow fields, areas along roadsides and railroads, gardens plots, weedy meadows, and waste areas. This plant prefers disturbed areas, and its capacity to invade higher quality natural habitats is low. [6]

Climate requirements

Pennycress grows well in many different climates. It can produce seeds in the northern hemisphere during the winter season. In the US and the Mediterranean it is sown commonly in October and can be harvested in May/June. To reach its yield potential a precipitation of about 300mm is needed. [14] Pennycress has a rather low water use efficiency needing 405 litres of water to produce 0.45kg of seeds. [15] Limited water availability depresses the yield. In general, pennycress is not well adapted for arid environments where natural precipitation is the only source of moisture. [16]

Ecology

Field pennycress is a weed of cultivated land and wasteland. [9] A study in Germany indicates that a pennycress-corn double-cropping system improves spider diversity to a larger degree than mustard-corn, green fallow-corn and bare fallow-corn double cropping systems. [17] The addition of pennycress to a corn rotation also increased and stabilized ground beetle diversity more effectively than a mustard (Sinapis alba)–corn rotation, a green fallow–corn rotation, or a bare fallow–corn rotation. This was mainly due to the evenness of plant cover throughout the growing season. Therefore, Bioenergy from double-cropped pennycress may support ground beetle diversity. [17]

Pennycress can be utilized as part of a comprehensive integrated weed management strategy. [18] Fall establishment can provide early spring ground cover and suppress aggressive spring germinating weeds such as common lambsquarters (Chenopodium album), giant ragweed (Ambrosia trifida), and tall waterhemp (Amaranthus tuberculatus). [18] Johnson et al. (2015) speculated that weed suppression may have been caused by allelopathic compounds rather than ground cover when pennycress seeding rates and companion crops were taken into account. [18]

Agronomy

Seeding

Current studies suggest a seeding rate of 1500 seeds per meter square for Europe while 672 seeds per meter square is suggested for the US. This variability is due to different climates. [4] The recommended seeding depth is around 1 cm. For good germination rates pennycress needs about 25-40mm of water and favours cold and wet conditions. [15]

Fertilization

In order to increase yields several studies evaluated the effect of fertilization on pennycress. Generally cover crops like pennycress are used to take up the available nutrients to prevent them from leaching. Nitrate and sulphur fertilization had positive effects on the seed yield of pennycress, but also no fertilized treatments showed sufficient[ clarification needed ] yields. [15]

Harvesting yield

Pennycress can be harvested with common machinery used for grain/corn and soy bean production. This makes it favorable for integration in many crop rotations. As pennycress is grown over the winter period the combines for harvesting are available in spring time as the harvest of all other crops happens at a different time of the year. The seed yield ranges for pennycress grown as a production crop currently range from 1000 kg/ha to 1500 kg/ha [19]

Integration in soy maize crop rotations

In the mid east of the US a common crop rotation is Soybean and Maize. After harvest the fields are kept as fallows. Pennycress appears to be especially well suited for oil production when cultivated before soybean. As a cover crop grown over the winter period with harvest taking place in spring, it can effectively reduce soil erosion, prevent nutrient leaching, improve soil structure and increase biodiversity. [17] [14] The required machinery for cultivation is already available in the region, as it is the same used for maize and soybean production. [4] In the Mid-western United States, its use as a rotation crop with soybean and maize maintains the pathogen Soybean Cyst Nematode (Heterodera glycines), though less effectively than other legumes [20]

Uses

Oil

The first attempts to grow pennycress as an oil crop took place in 1994. However, since 2002 it is more and more considered as a potential oil crop rather than a “noxious weed”. [4] High erucic acid content (>300g per kg of its total seed oil DM) makes the oil from landraces unsuitable for food purposes. Pennycress landraces also contain Glucosinolates, which make the usage as food undesirable. [4] Recently pennycress oil has attracted great interest as raw material for jet fuel and Biodiesel production. [21] Oils with high erucic acid are especially suitable for jet fuel production. [22] Oil characteristics are highly influenced by specific environmental conditions such as precipitation. [4]

Feed

Due to the high erucic acid content the seeds are unsuitable for human consumption. Instead, the biomass can be used as feed for livestock. Its fast growth under cold conditions favors the usage as fodder as a second crop. [4] Its low biomass production makes it undesirable to concentrate on pennycress cultivation for fodder production.

Food

The field pennycress has a bitter taste; it is usually parboiled to remove the bitter taste. This is mostly used in salads, sometimes in sandwich spreads. It is said to have a distinctive flavour. [23]

Use as a source of biodiesel

Pennycress is being developed as an oilseed crop for production of renewable fuels. [24] [25] The species can be planted in the fall, will germinate and form a vegetative mass which can overwinter. In the spring, the oil-rich seed can be harvested and used as a biodiesel feedstock.

Research

Pennycress is related to the model plant species Arabidopsis thaliana . Researchers have begun studying the genetics of pennycress in order to improve its potential use as a biofuel crop. For example, the transcriptome of pennycress has been sequenced. [26]

Seed Thlaspiseed.jpg
Seed

Related Research Articles

<span class="mw-page-title-main">Crop rotation</span> Agricultural practice of changing crops

Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. This practice reduces the reliance of crops on one set of nutrients, pest and weed pressure, along with the probability of developing resistant pests and weeds.

<span class="mw-page-title-main">Biodiesel</span> Fuel made from vegetable oils or animal fats

Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat (tallow), soybean oil, or some other vegetable oil with an alcohol, producing a methyl, ethyl or propyl ester by the process of transesterification.

<span class="mw-page-title-main">Rapeseed</span> Oilseed, Brassica, food, feed, industry

Rapeseed, also known as oilseed rape, is a bright-yellow flowering member of the family Brassicaceae, cultivated mainly for its oil-rich seed, which naturally contains appreciable amounts of erucic acid. The term "canola" denotes a group of rapeseed cultivars that were bred to have very low levels of erucic acid and which are especially prized for use as human and animal food. Rapeseed is the third-largest source of vegetable oil and the second-largest source of protein meal in the world.

<span class="mw-page-title-main">Legume</span> Plant in the family Fabaceae

A legume is a plant in the family Fabaceae, or the fruit or seed of such a plant. When used as a dry grain, the seed is also called a pulse. Legumes are grown agriculturally, primarily for human consumption, for livestock forage and silage, and as soil-enhancing green manure. Well-known legumes include beans, soybeans, chickpeas, peanuts, lentils, lupins, grass peas, mesquite, carob, tamarind, alfalfa, and clover. Legumes produce a botanically unique type of fruit – a simple dry fruit that develops from a simple carpel and usually dehisces on two sides.

<i>Matricaria chamomilla</i> Species of flowering plant

Matricaria chamomilla, commonly known as chamomile, German chamomile, Hungarian chamomile (kamilla), wild chamomile, blue chamomile, or scented mayweed, is an annual plant of the composite family Asteraceae. Commonly, the name M. recutita is applied to the most popular source of the herbal product chamomile, although other species are also used as chamomile. Chamomile is known mostly for its use against gastrointestinal problems; additionally, it can be used to treat irritation of the skin.

<span class="mw-page-title-main">Safflower</span> Species of plant

Safflower is a highly branched, herbaceous, thistle-like annual plant in the family Asteraceae. It is commercially cultivated for vegetable oil extracted from the seeds and was used by the early Spanish colonies along the Rio Grande as a substitute for saffron. Plants are 30 to 150 cm tall with globular flower heads having yellow, orange, or red flowers. Each branch will usually have from one to five flower heads containing 15 to 20 seeds per head. Safflower is native to arid environments having seasonal rain. It grows a deep taproot which enables it to thrive in such environments.

<i>Panicum virgatum</i> Species of plant

Panicum virgatum, commonly known as switchgrass, is a perennial warm season bunchgrass native to North America, where it occurs naturally from 55°N latitude in Canada southwards into the United States and Mexico. Switchgrass is one of the dominant species of the central North American tallgrass prairie and can be found in remnant prairies, in native grass pastures, and naturalized along roadsides. It is used primarily for soil conservation, forage production, game cover, as an ornamental grass, in phytoremediation projects, fiber, electricity, heat production, for biosequestration of atmospheric carbon dioxide, and more recently as a biomass crop for ethanol and butanol.

<span class="mw-page-title-main">Bioenergy</span> Energy made from recently-living organisms

Bioenergy is energy made or generated from biomass, which consists of recently living organisms, mainly plants. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

<i>Camelina sativa</i> Species of flowering plant

Camelina sativa is a flowering plant in the family Brassicaceae usually known as camelina, gold-of-pleasure, or false flax, but also occasionally as wild flax, linseed dodder, German sesame, or Siberian oilseed. It is native to Europe and areas of Central Asia, but cultivated as an oilseed crop mainly in Europe and in North America. It is not related to true flax, in the family Linaceae.

<span class="mw-page-title-main">Corn stover</span> Maize plant parts left in field after harvest

Corn stover consists of the leaves, stalks, and cobs of maize (corn) plants left in a field after harvest. Such stover makes up about half of the yield of a corn crop and is similar to straw from other cereal grasses; in Britain it is sometimes called corn straw. Corn stover is a very common agricultural product in areas of large amounts of corn production. As well as the non-grain part of harvested corn, the stover can also contain other weeds and grasses. Field corn and sweet corn, two different types of maize, have relatively similar corn stover.

<span class="mw-page-title-main">Living mulch</span> Cover crop grown with a main crop as mulch

In agriculture, a living mulch is a cover crop interplanted or undersown with a main crop, and intended to serve the purposes of a mulch, such as weed suppression and regulation of soil temperature. Living mulches grow for a long time with the main crops, whereas cover crops are incorporated into the soil or killed with herbicides.

<i>Crambe abyssinica</i> Species of flowering plant

Crambe abyssinica is an annual oilseed crop of the family Brassicaceae. It is mainly cultivated due to the high levels of erucic acid that are contained in its seeds. The crambe oil is used for industrial purposes and its side products can be partly used as animal feed.

<span class="mw-page-title-main">Energy crop</span> Crops grown solely for energy production by combustion

Energy crops are low-cost and low-maintenance crops grown solely for renewable bioenergy production. The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate electrical power or heat.

<span class="mw-page-title-main">Crop</span> Plant or animal product which can be grown and harvested

A crop is a plant that can be grown and harvested extensively for profit or subsistence. When the plants of the same kind are cultivated at one place on a large scale, it is called a crop. Most crops are cultivated in agriculture or hydroponics. Crops may include macroscopic fungus and marine macroalga, some of which are grown in aquaculture.

<i>Miscanthus × giganteus</i> Species of grass

Miscanthus × giganteus, also known as the giant miscanthus, is a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus. It is a perennial grass with bamboo-like stems that can grow to heights of 3–4 metres (13 ft) in one season. Just like Pennisetum purpureum, Arundo donax and Saccharum ravennae, it is also called elephant grass.

<i>Jatropha curcas</i> Species of plant

Jatropha curcas is a species of flowering plant in the spurge family, Euphorbiaceae, that is native to the American tropics, most likely Mexico and Central America. It is originally native to the tropical areas of the Americas from Mexico to Argentina, and has been spread throughout the world in tropical and subtropical regions around the world, becoming naturalized or invasive in many areas. The specific epithet, "curcas", was first used by Portuguese doc Garcia de Orta more than 400 years ago. Common names in English include physic nut, Barbados nut, poison nut, bubble bush or purging nut. In parts of Africa and areas in Asia such as India it is often known as "castor oil plant" or "hedge castor oil plant", but it is not the same as the usual castor oil plant, Ricinus communis.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

<i>Silphium perfoliatum</i> Species of flowering plant

Silphium perfoliatum, the cup plant or cup-plant, is a species of flowering plant in the family Asteraceae, native to eastern and central North America. It is an erect herbaceous perennial with triangular toothed leaves, and daisy-like yellow composite flower heads in summer.

Yield10 Bioscience is a company developing new technologies to achieve improvements in crop yield to enhance global food security.

<span class="mw-page-title-main">Rapeseed oil</span> Vegetable oil

Rapeseed oil is one of the oldest known vegetable oils. There are both edible and industrial forms produced from rapeseed, the seed of several cultivars of the plant family Brassicaceae. Historically, it was restricted as a food oil due to its content of erucic acid, which in laboratory studies was shown to be damaging to the cardiac muscle of laboratory animals in high quantities and which imparts a bitter taste, and glucosinolates, which made it less nutritious in animal feed. Rapeseed oil from standard cultivars can contain up to 54% erucic acid.

References

  1. USDA, NRCS (n.d.). "Thlaspi arvensis". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 9 December 2015.
  2. 1 2 Stace, C. A. (2010). New Flora of the British Isles (3rd ed.). Cambridge, U.K.: Cambridge University Press. ISBN   978-0-521-70772-5.
  3. 1 2 3 Reader's Digest Field Guide to the Wild Flowers of Britain. Reader's Digest. 1981. p. 53. ISBN   978-0-276-00217-5.
  4. 1 2 3 4 5 6 7 Zanetti, Federica; Isbell, Terry A.; Gesch, Russ W.; Evangelista, Roque L.; Alexopoulou, Efthymia; Moser, Bryan; Monti, Andrea (November 2019). "Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production". Biomass and Bioenergy. 130: 105354. doi:10.1016/j.biombioe.2019.105354. S2CID   204123315.
  5. 1 2 Isbell, Terry A. (15 July 2009). "US effort in the development of new crops (Lesquerella, Pennycress Coriander and Cuphea)". Oléagineux, Corps Gras, Lipides. 16 (4–5–6): 205–210. doi: 10.1051/ocl.2009.0269 .
  6. 1 2 Phippen, W.B.; Phippen, M.E. (2013). Seed Oil Characteristics of Wild Field Pennycress (Thlaspi arvense L.) Populations and USDA Accessions (PDF). Association for the Advancement of Industrial Crops 25th Annual meeting. Washington DC USA.
  7. Hultén, Eric; Fries, Magnus (1986). Atlas of North European vascular plants north of the Tropic of Cancer. Vol. III. Koeltz Scientific. p. 1063. ISBN   3874292614.
  8. Jalas, J.; Suominen, J.; Lampinen, R. (1996). Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. Vol. 11. Cruciferae (Ricotia to Raphanus). Helsinki: The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo. p. 143. ISBN   951-9108-11-4.
  9. 1 2 "Online Atlas of the British & Irish flora: Thlaspi arvense, Field pennycress". London, U.K.: Biological Records Centre and Botanical Society of Britain and Ireland. Retrieved 29 May 2016. [For details of distribution on the British Isles.]
  10. 1 2 3 Meusel, Hermann; Jäger, E.; Weinert, E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora. Vol. [Band I]. Jena: Fischer. K179.
  11. 1 2 "Thlaspi arvense Linnaeus". Flora of China. Retrieved 24 December 2021.
  12. "Thlaspi arvense L." Flora of Nepal. Retrieved 24 December 2021.
  13. "Thlaspi arvense L." Flora of Pakistan. Retrieved 24 December 2021.
  14. 1 2 Moore, Kenneth J; Karlen, Douglas L (9 April 2014). "Double cropping opportunities for biomass crops in the north central USA". Biofuels. 4 (6): 605–615. doi:10.4155/bfs.13.50. S2CID   56004605.
  15. 1 2 3 Cubins, Julija A.; Wells, M. Scott; Frels, Katherine; Ott, Matthew A.; Forcella, Frank; Johnson, Gregg A.; Walia, Maninder K.; Becker, Roger L.; Gesch, Russ W. (4 September 2019). "Management of pennycress as a winter annual cash cover crop. A review". Agronomy for Sustainable Development. 39 (5). doi: 10.1007/s13593-019-0592-0 . CC-BY icon.svg Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  16. Royo-Esnal, Aritz; Edo-Tena, Eva; Torra, Joel; Recasens, Jordi; Gesch, Russ W. (January 2017). "Using fitness parameters to evaluate three oilseed Brassicaceae species as potential oil crops in two contrasting environments". Industrial Crops and Products. 95: 148–155. doi:10.1016/j.indcrop.2016.10.020. hdl: 10459.1/59125 .
  17. 1 2 3 Groeneveld, Janna H.; Lührs, Hans P.; Klein, Alexandra-Maria (August 2015). "Pennycress double-cropping does not negatively impact spider diversity". Agricultural and Forest Entomology. 17 (3): 247–257. doi: 10.1111/afe.12100 . S2CID   82895391.
  18. 1 2 3 Johnson, Gregg A.; Kantar, Michael B.; Betts, Kevin J.; Wyse, Donald L. (2015). "Field Pennycress Production and Weed Control in a Double Crop System with Soybean in Minnesota". Agronomy Journal. 107 (2): 532. doi:10.2134/agronj14.0292. S2CID   4945325.
  19. "IPREFER project www.iprefercap.org"
  20. https://sciendo.com/article/10.2478/jofnem-2022-0006
  21. Sindelar, Aaron J.; Schmer, Marty R.; Gesch, Russell W.; Forcella, Frank; Eberle, Carrie A.; Thom, Matthew D.; Archer, David W. (March 2017). "Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations". GCB Bioenergy. 9 (3): 508–524. doi: 10.1111/gcbb.12297 .
  22. Nieschlag, H. J.; Wolff, I. A. (November 1971). "Industrial uses of high erucic oils". Journal of the American Oil Chemists' Society. 48 (11): 723–727. doi:10.1007/BF02638529. S2CID   43546307.
  23. "Field Pennycress Thlaspi arvense". ediblewildfood.com. Retrieved 1 December 2017.
  24. CoverCress, Inc. website
  25. Field pennycress shows feedstock potential
  26. Dorn, Kevin M.; Fankhauser, Johnathon D.; Wyse, Donald L.; Marks, M. David (September 2013). "De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock". The Plant Journal. 75 (6): 1028–1038. doi:10.1111/tpj.12267. PMC   3824206 . PMID   23786378.