Throttle response

Last updated

Throttle response or vehicle responsiveness is a measure of how quickly a vehicle's prime mover, such as an internal combustion engine, can increase its power output in response to a driver's request for acceleration. Throttles are not used in diesel engines, but the term throttle can be used to refer to any input that modulates the power output of a vehicle's prime mover. Increased throttle response is often confused with increased power (Since increasing throttle response reduces the time needed to reach higher RPM speeds and consequently provides immediate access to an internal combustion engine's power and makes a slow car equipped with that engine, for example, feel quicker [1] ) but is more accurately described as time rate of change of power levels. [2]

Contents

Gasoline vs diesel

Formerly, gasoline/petrol engines exhibited better throttle response than diesel engines. This results from higher specific power output and higher maximum engine power, as well as the fact that lower-powered diesel engines were disproportionately heavier. Recently diesel engines became able to outperform similar-sized petrol engines. Most naturally aspirated gasoline engines have better responsiveness than supercharged or turbocharged engines for engines with similar peak power outputs. However, factors such as improper maintenance, fouled spark plugs or bad injectors can reduce throttle response. Diesel engines are less likely to lose throttle response, since their power comes from self-igniting fuel. Older diesel engines directly connect the accelerator pedal to the injection pump resulting in instant response.

Several tuning factors can affect engine responsiveness. [3] [4] Throttle response in manual cars can be enhanced by dropping to a lower gear before accelerating. This action is often used in smaller cars to aid in overtaking.

Engine design

The advent of concern about fuel economy and emissions had major impacts on engine design. Some of the trade-offs reduced throttle response. Most new cars employ a drive-by-wire system, which includes electronic throttle control and can itself either reduce or increase throttle response (Depending on whether or not it's being employed on a performance car). Earlier designs featured carburetors with an "accelerating pump" that made the fuel mix richer when the accelerator pedal was depressed suddenly, which increased hydrocarbon emissions. Later designs removed this feature.

See also

Notes and references

  1. https://pedalcommander.com/blogs/garage/throttle-response-all-aspects#:~:text=The%20faster%20the%20throttle%20response%20your%20car%20has%2C%20the%20less%20time%20it%20takes%20to%20reach%20higher%20engine%20speeds.%20So%2C%20this%20process%20offers%20instant%20access%20to%20the%20engine%E2%80%99s%20power.%20For%20this%20reason%2C%20a%20good%20throttle%20response%20can%20make%20a%20slow%20car%20faster
  2. "DIY: Free and Easy 2005+ Mustang Throttle Response Modification". autobglo.com. Auto B Glo. 2007-11-14. Archived from the original on April 2, 2008. Retrieved 2008-01-19.
  3. Bohacz, Ray. "Eliminate Engine Detonation Without Losing Power and Throttle Response". highperformancepontiac.com. Retrieved 2008-01-19.
  4. Kowatari, T.; Aono, T. (2006). "Throttle-control algorithm for improving engine response based on air-intake model and throttle-response model". IEEE Xplore. Vol. 53, no. 3. IEEE. pp. 915–921. doi:10.1109/TIE.2006.874263. Archived from the original on December 26, 2014. Retrieved 2008-01-19.

Related Research Articles

<span class="mw-page-title-main">Carburetor</span> Component of internal combustion engines which mixes air and fuel in a controlled ratio

A carburetor is a device used by an internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in the main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances.

<span class="mw-page-title-main">Hybrid vehicle</span> Vehicle using two or more power sources

A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.

<span class="mw-page-title-main">Exhaust gas recirculation</span> NOx reduction technique used in gasoline and diesel engines

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">Fuel efficiency</span> Form of thermal efficiency

Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous energy profile. Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.

<span class="mw-page-title-main">Naturally aspirated engine</span> Type of internal combustion engine

A naturally aspirated engine, also known as a normally aspirated engine, and abbreviated to N/A or NA, is an internal combustion engine in which air intake depends solely on atmospheric pressure and does not have forced induction through a turbocharger or a supercharger.

<span class="mw-page-title-main">Exhaust gas</span> Gases emitted as a result of fuel reactions in combustion engines

Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.

<span class="mw-page-title-main">Engine braking</span>

Engine braking occurs when the retarding forces within an engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.

Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber.

Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air:fuel ratio may be as lean as 65:1. The air / fuel ratio needed to stoichiometrically combust gasoline, by contrast, is 14.64:1. The excess of air in a lean-burn engine emits far less hydrocarbons. High air–fuel ratios can also be used to reduce losses caused by other engine power management systems such as throttling losses.

<span class="mw-page-title-main">Gasoline direct injection</span> Mixture formation system

Gasoline direct injection (GDI), also known as petrol direct injection (PDI), is a mixture formation system for internal combustion engines that run on gasoline (petrol), where fuel is injected into the combustion chamber. This is distinct from manifold injection systems, which inject fuel into the intake manifold.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

Homogeneous Charge Compression Ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction releases energy that can be transformed in an engine into work and heat.

A throttle is the mechanism by which fluid flow is managed by constriction or obstruction.

Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines-

  1. Internal combustion and
  2. External combustion engines.
<span class="mw-page-title-main">Energy-efficient driving</span>

Energy-efficient driving techniques are used by drivers who wish to reduce their fuel consumption, and thus maximize fuel efficiency. The use of these techniques is called "hypermiling".

<span class="mw-page-title-main">Hydrogen internal combustion engine vehicle</span> Vehicle with hydrogen internal combustion engine

A hydrogen internal combustion engine vehicle (HICEV) is a type of hydrogen vehicle using an internal combustion engine. Hydrogen internal combustion engine vehicles are different from hydrogen fuel cell vehicles. Instead, the hydrogen internal combustion engine is simply a modified version of the traditional gasoline-powered internal combustion engine. The absence of carbon means that no CO2 is produced, which eliminates the main greenhouse gas emission of a conventional petroleum engine.

<span class="mw-page-title-main">IKCO EF engines</span> Motor vehicle engine

IKCO EF Engines are a family of four-cylinder engines by the Iranian car manufacturer Iran Khodro (IKCO). The first engines of this family were designed jointly by Iran Khodro Powertrain Company (IPCO) and F.E.V GmbH of Germany. The later models were designed by IPCO itself. IPCO is the powertrain design and production company of IKCO.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.