Ti-10V-2Fe-3Al

Last updated

Ti-10V-2Fe-3Al (UNS designation R56410), also known as Ti 10-2-3, is a non-ferrous near-beta titanium alloy featuring an excellent combination of strength, ductility, fracture toughness and high cycle fatigue strength. It is typically used in the aerospace industry for critical aircraft structures, such as landing gear. [1]

Contents

Ti-10V-2Fe-3Al Chemistry [2]

VALFeOCNHYTiRemainder EachRemainder Total
Min92.61.6----------------
Max113.42.22.13.05.05.015.005Balance.1.3

Ti-10V-2Fe-3Al Markets [3]

Ti-10V-2Fe-3Al Applications [4]

Ti-10V-2Fe-3Al Specifications [5]

Related Research Articles

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

<span class="mw-page-title-main">Amorphous metal</span> Solid metallic material with disordered atomic-scale structure

An amorphous metal is a solid metallic material, usually an alloy, with disordered atomic-scale structure. Most metals are crystalline in their solid state, which means they have a highly ordered arrangement of atoms. Amorphous metals are non-crystalline, and have a glass-like structure. But unlike common glasses, such as window glass, which are typically electrical insulators, amorphous metals have good electrical conductivity and can show metallic luster.

<span class="mw-page-title-main">Monel</span> Solid-solution binary alloy of nickel and copper

Monel is a group of alloys of nickel and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper.

<span class="mw-page-title-main">Inconel</span> Austenitic nickel-chromium superalloys

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminium and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of both raw materials and processing limit their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.

<span class="mw-page-title-main">Orthodontic archwire</span> Wire used in dental braces

An archwire in orthodontics is a wire conforming to the alveolar or dental arch that can be used with dental braces as a source of force in correcting irregularities in the position of the teeth. An archwire can also be used to maintain existing dental positions; in this case it has a retentive purpose.

Titanium aluminide, commonly gamma titanium, is an intermetallic chemical compound. It is lightweight and resistant to oxidation and heat, but has low ductility. The density of γ-TiAl is about 4.0 g/cm3. It finds use in several applications including aircraft, jet engines, sporting equipment and automobiles. The development of TiAl based alloys began circa 1970. The alloys have been used in these applications only since about 2000.

<span class="mw-page-title-main">Litespeed</span> American bicycle manufacturer

Litespeed is a U.S. bicycle manufacturer founded in 1986 in Ooltewah, Tennessee by David Lynskey. Litespeed makes titanium and carbon fiber frame road racing bicycles and mountain bikes. Titanium bicycle frames are famed for their ride quality. Litespeed, along with triathlon specific bicycle manufacturer Quintana Roo, is a subsidiary of the American Bicycle Group.

Vacuum arc remelting (VAR) is a secondary melting process for production of metal ingots with elevated chemical and mechanical homogeneity for highly demanding applications. The VAR process has revolutionized the specialty traditional metallurgical techniques industry, and has made possible tightly-controlled materials used in biomedical, aviation and aerospace.

Carpenter Technology Corporation develops, manufactures, and distributes stainless steels and corrosion-resistant alloys. In fiscal year 2018, the company's revenues were derived from the aerospace and defense industry (55%), the industrial and consumer industry (17%), the medical industry (8%), the transportation industry (7%), the energy industry (7%), and the distribution industry (6%). The company's products are used in landing gear, shaft collars, safety wires, electricity generation products, intervertebral disc arthroplasty, and engine valves and weldings.

Defence Metallurgical Research Laboratory (DMRL) is a research laboratory of the Defence Research and Development Organisation (DRDO). Located in Defence Research Complex, Kanchanbagh, Hyderabad. It is responsible for the development and manufacture of complex metals and materials required for modern warfare and weapon systems.

Titanium Beta C refers to Ti Beta-C, a trademark for an alloy of titanium originally filed by RTI International. It is a metastable "beta alloy" which was originally developed in the 1960s; Ti-3Al-8V-6Cr-4Mo-4Zr, nominally 3% aluminum, 8% vanadium, 6% chromium, 4% molybdenum, 4% zirconium and balance (75%): titanium.

AA 2319 is an aluminium alloy principally containing copper (5.8–6.8%) as an alloying element. It also contains ≤0.20% silicon, ≤0.30% iron, 0.20–0.40% manganese, ≤0.02% magnesium, ≤0.10% zinc, 0.10–0.20% titanium, 0.05–0.15% vanadium, 0.10–0.25% zirconium, ≤0.0003% beryllium and up to 0.15% trace elements. The density of 2319 aluminium is 2840 kg/m3. This alloy was first registered in 1958, in the United States.

Incoloy refers to a range of superalloys now produced by the Special Metals Corporation (SMC) group of companies and created with a trademark by the Inco company in 1952. Originally Inco protected these alloys by patent. In 2000, the SMC published a 61-page document entitled "High-Performance Alloys for Resistance to Aqueous Corrosion" highlighting Incoloy, as well as Monel and Inconel products, and their use in fluid environments such as sulfuric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, other acids as well as freshwater environments.

Ti-6Al-4V, also sometimes called TC4, Ti64, or ASTM Grade 5, is an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance. It is one of the most commonly used titanium alloys and is applied in a wide range of applications where low density and excellent corrosion resistance are necessary such as e.g. aerospace industry and biomechanical applications.

Ti-6Al-2Sn-4Zr-2Mo, also known as Ti 6-2-4-2, is a near alpha titanium alloy known for its high strength and excellent corrosion resistance. It is often used in the aerospace industry for creating high-temperature jet engines and the automotive industry to create high performance automotive valves.

<span class="mw-page-title-main">Inconel 625</span> Nickel-based superalloy

Inconel Alloy 625 is a nickel-based superalloy that possesses high strength properties and resistance to elevated temperatures. It also demonstrates remarkable protection against corrosion and oxidation. Its ability to withstand high stress and a wide range of temperatures, both in and out of water, as well as being able to resist corrosion while being exposed to highly acidic environments makes it a fitting choice for nuclear and marine applications.

Ti-6Al-7Nb is an alpha-beta titanium alloy first synthesized in 1977 containing 6% aluminum and 7% niobium. It features high strength and has similar properties as the cytotoxic vanadium containing alloy Ti-6Al-4V. Ti-6Al-7Nb is used as a material for hip prostheses.

<span class="mw-page-title-main">Aircraft recycling</span> Recycling industry for aircraft

Aircraft recycling is the process of scrapping and disassembling retired aircraft, and re-purposing their parts as spare parts or scrap. Airplanes are made of around 800 to 1000 parts that can be recycled, with the majority of them made from metal alloys and composite materials. The two most common metal alloys are aluminum and titanium and the main composite material is carbon fiber.

References

  1. "TIMET 10-2-3 Titanium Alloy". MatWeb.
  2. "Ti-10V-2Fe-3Al Titanium Alloy". Rickard Metals. 5 August 2014.
  3. "Titanium Alloy Guide" (PDF). RMI Titanium Company.
  4. "Titanium Alloy Guide" (PDF). RMI Titanium Company.
  5. "Ti-10V-2Fe-3Al Titanium Alloy". Rickard Metals. 5 August 2014.