Tissue engineering of heart valves

Last updated

Tissue engineered heart valves (TEHV) offer a new and advancing proposed treatment of creating a living heart valve for people who are in need of either a full or partial heart valve replacement. Currently, there are over a quarter of a million prosthetic heart valves implanted annually, [1] and the number of patients requiring replacement surgeries is only suspected to rise and even triple over the next fifty years. [2] While current treatments offered such as mechanical valves or biological valves are not deleterious to one's health, they both have their own limitations in that mechanical valves necessitate the lifelong use of anticoagulants while biological valves are susceptible to structural degradation and reoperation. [2] [3] Thus, in situ (in its original position or place) tissue engineering of heart valves serves as a novel approach that explores the use creating a living heart valve composed of the host's own cells that is capable of growing, adapting, and interacting within the human body's biological system. [4]

Contents

Research has not yet reached the stage of clinical trials.

Procedure

Seeding cells into scaffold ready for tissue engineering use and implantation Tissue engineering english.jpg
Seeding cells into scaffold ready for tissue engineering use and implantation

Scaffolds

Various biomaterials, whether they are biological, synthetic, or a combination of both, can be used to create scaffolds, which when implanted in a human body can promote host tissue regeneration. [5] First, cells from the patient in which the scaffold will be implanted in are harvested. These cells are expanded and seeded into the created scaffold, which is then inserted inside the human body. [6] The human body serves as a bioreactor, which allows the formation of an extracellular matrix (ECM) along with fibrous proteins around the scaffold to provide the necessary environment for the heart and circulatory system. [7] The initial implantation of the foreign scaffold triggers various signaling pathways guided by the foreign body response for cell recruitment from neighboring tissues. [2] The new nanofiber network surrounding the scaffold mimics the native ECM of the host body. [8] Once cells begin to populate the cell, the scaffold is designed to gradually degrade, leaving behind a constructed heart valve made of the host body's own cells that is fully capable of cell repopulation and withstanding environmental changes within the body. [9] The scaffold designed for tissue engineering is one of the most crucial components because it guides tissue construction, viability, and functionality long after implantation and degradation.[ citation needed ]

Biological

Decellularized tricuspid biological heart valve BiologicalValves.JPG
Decellularized tricuspid biological heart valve

Biological scaffolds can be created from human donor tissue or from animals; however, animal tissue is often more popular since it is more widely accessible and more plentiful. [10] Xenograft, from a donor of a different species from the recipient, heart valves can be from either pigs, cows, or sheep. [8] If either human or animal tissue is used, the first step in creating useful scaffolds is decellularization, which means to remove the cellular contents all the while preserving the ECM matrix, [11] which is advantageous compared to manufacturing synthetic scaffolds from scratch. Many decellularization methods have been used such as the use of nonionic and ionic detergents that disrupt cellular material interactions or the use of enzymes to cleave peptide bonds, RNA, and DNA. [8]

Fabricated

There are also current approaches that are manufacturing scaffolds and coupling them with biological cues. [2] Fabricated scaffolds can also be manufactured using either biological, synthetic, or a combination of both materials from scratch to mimic the native heart valve observed using imaging techniques. Since the scaffold is created from raw materials, there is much more flexibility in controlling the scaffold's properties and can be more tailored. Some types of fabricated scaffolds include solid 3-D porous scaffolds that have a large pore network that permits the flow through of cellular debris, allowing further tissue and vascular growth. [12] 3-D porous scaffolds can be manufactured through 3-D printing or various polymers, ranging from polyglycolic acid (PGA) and polylactic acid (PLA) to more natural polymers such as collagen. [8]

Fibrous scaffolds have the potential to closely match the structure of ECM through its use of fibers, which have a high growth factor. Techniques to produce fibrous scaffolds include electrospinning, [13] [11] in which a liquid solution of polymers is stretched from an applied high electric voltage to produce thin fibers. Conversely to the 3-D porous scaffolds, fibrous scaffolds have a very small pore size that prevents the pervasion of cells within the scaffold. [14]

Hydrogel scaffolds are created by cross-linking hydrophilic polymers through various reaction such as free radical polymerization or conjugate addition reaction. [8] Hydrogels are beneficial because they have a high water content, which allows the ease of nutrients and small materials to pass through. [15]

Biocompatibility

The biocompatibility of surgically implanted foreign biomaterial refers to the interactions between the biomaterial and the host body tissue. Cell line as well as cell type such as fibroblasts can largely impact tissue responses towards implanted foreign devices by changing cell morphology. [16] Thus the cell source as well as protein adsorption, which is dependent on biomaterial surface property, play a crucial role in tissue response and cell infiltration at the scaffold site.[ citation needed ]

Methodology

Inflammatory response

Acute inflammation

Implantation of any foreign device or material through the means of surgery results in at least some degree of tissue trauma. Therefore, especially when removing a native heart valve either partially or completely, the tissue trauma will trigger a cascade of inflammatory responses and elicit acute inflammation. During the initial phase of acute inflammation, vasodilation occurs to increase blood flow to the wound site along with the release of growth factors, cytokines, and other immune cells. Furthermore, cells release reactive oxygen species and cytokines, which cause secondary damage to surrounding tissue. [17] These chemical factors then proceed to promote the recruitment of other immune responsive cells such as monocytes or white blood cells, which help foster the formation of a blood clot and protein-rich matrix.[ citation needed ]

Chronic inflammation

If the acute inflammatory response persists, the body then proceeds to undergo chronic inflammation. During this continual and systemic inflammation phase, one of the primary driving forces is the infiltration of macrophages. The macrophages and lymphocytes induce the formation of new tissues and blood vessels to help supply nutrients to the biomaterial site. New fibrous tissue then encapsulates the foreign biomaterial in order to minimize interactions between the biomaterial and surrounding tissue. While the prolonging of chronic inflammation may be a likely indicator for an infection, inflammation may on occasion be present upwards to five years post-surgery. Chronic inflammation marked by the presence of fibrosis and inflammatory cells was observed in rat cells 30 days post implantation of a device. [18]

Following chronic inflammation, mineralization occurs approximately 60 days after implantation due to the buildup of cellular debris and calcification, which has the potential to compromise the functionality of biocompatible implanted devices in vivo.

Multi-nucleated Foreign body giant cell (FBGC) from the fusion of macrophages Suture micrograph.jpg
Multi-nucleated Foreign body giant cell (FBGC) from the fusion of macrophages

Foreign body response

Under normal physiological conditions, inflammatory cells protect the body from foreign objects, and the body undergoes a foreign body reaction based on the adsorption of blood and proteins on the biomaterial surface. In the first two to four weeks post implant, there is an association between biomaterial adherent macrophages and cytokine expression near the foreign implant site, which can be explored using semi-quantitative RT-PCR. [19] Macrophages fuse together to form foreign body giant cells (FBGCs), which similarly express cytokine receptors on their cell membranes and actively participate in the inflammatory response. Device failure in organic polyether polyurethane (PEU) pacemakers compared to silicone rubber showcases that the foreign body response may indeed lead to degradation of biomaterials, causing subsequent device failures. The utilization of to prevent functionality and durability compromise is proposed to minimize and slow the rate of biomaterial degradation. [19]

Benefits

Tissue engineered heart valves offer certain advantages over traditional biological and mechanical valves:

Risks and challenges

Diagram of the opened heart viewed from the front, displaying the complex anatomical geometry of valves Diagram of the human heart (cropped).svg
Diagram of the opened heart viewed from the front, displaying the complex anatomical geometry of valves

Many risks and challenges must still be addressed and explored before tissue engineered heart valves can fully be clinically implemented:

History

Synthetic scaffolds

Studies performed seeded scaffolds made of polymers with various cell lines in vitro, in which the scaffolds degraded over time while leaving behind a cellular matrix and proteins. The first study on tissue engineering of heart valves was published in 1995. [11] During 1995 and 1996, Shinoka used a scaffold made of polyglycolic acid (PGA), approved by the FDA for human implantation, and seeded it with sheep endothelial cells and fibroblasts with the goal of replacing a sheep's pulmonary valve leaflet. [22] What resulted from Shinoka's study was an engineered heart valve that was much thicker and more rigid, which prompted Hoerstrup to conduct a study to replace all three pulmonary valve leaflets in a sheep using a poly-4-hydroxybutyrate (P4HB) coated PGA scaffold and sheep endothelial cells and myofibroblast. [23]

Biological scaffolds

Another option studied was using decellularized biological scaffolds and seeding them with their corresponding cells in vitro. [21] In 2000, Steinhoff implanted a decellularized sheep pulmonary valve scaffold seeded with sheep endothelial cells and myofibroblasts. [24] Dohmen then created a decellularized cryopreserved pulmonary allograft scaffold and seeded it with human vascular endothelial cells to reconstruct the right ventricular outflow tract (RVOT) in a human patient in 2002. [25] Perry in 2003 seeded a P4HB coated PGA scaffold with sheep mesenchymal stem cells in vitro; however, an in vivo study was not performed. [26] In 2004, Iwai conducted a study using a poly(lactic-co-glycolic acid) PLGA compounded with collagen microsponge sphere scaffold, which was seeded with endothelial and smooth muscle cells at the site of a dog's pulmonary artery. [27] Sutherland in 2005 utilized a sheep mesenchymal stem cell seeded PGA and poly-L-lactic acid (PLLA) scaffold to replace all three pulmonary valve leaflets in a sheep. [28]

In vivo implant studies

A handful of studies utilized tissue engineering of heart valves in vivo in animal models and humans. In 2000, Matheny conducted a study in which he used a pig's small intestinal submucosa to replace one pulmonary valve leaflet. [29] Limited studies have also been conducted in a clinical setting. For instance in 2001, Elkins implanted SynerGraft treated decellularized human pulmonary valves in patients. [30] Simon similarly used SynerGraft decellularized pig valves for implantation in children; [31] however, these valves widely failed as there were no host cells but rather high amounts of inflammatory cells found at the scaffold site instead. [32] [33] [8] Studies led by Dohmen, Konertz, and colleagues in Berlin, Germany involved the implantation of a biological pig valve in 50 patients who underwent the Ross operation from 2002 to 2004. [33] Using a decellularized porcine xenograft valve, also called Matrix P, in adults with a median age of 46 years, the aim of the study was to offer a proposal for pulmonary valve replacement. While some patients died postoperatively and had to undergo reoperation, the short-term results appear to be going well as the valve is behaving similarly to a native, healthy valve. [34] One animal trial combined the transcatheter aortic valve replacement (TAVR) procedure with tissue engineered heart valves (TEHVs). A TAVR stent integrated with human cell-derived extracellular matrix was implanted and examined in sheep, in which the valve upheld structural integrity and cell infiltration, allowing the potential clinical application to extend TAVR to younger patients. [35]

Research

While many in vitro and in vivo studies have been tested in animal models, the translation from animal models to humans has not begun. Factors such as the size of surgical cut sites, duration of the procedure, and available resources and cost must all be considered. [36] Synthetic nanomaterials have the potential to advance scaffoldings used in tissue engineering of heart valves. The use of nanotechnology could help expand beneficial properties of fabricated scaffolds such as higher tensile strength. [37]

See also

Related Research Articles

<span class="mw-page-title-main">Tissue engineering</span> Biomedical engineering discipline

Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. Tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose but is not limited to applications involving cells and tissue scaffolds. While it was once categorized as a sub-field of biomaterials, having grown in scope and importance it can be considered as a field of its own.

<span class="mw-page-title-main">Implant (medicine)</span> Device surgically placed within the body for medical purposes

An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. For example, an implant may be a rod, used to strengthen weak bones. Medical implants are human-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone, or apatite depending on what is the most functional. In some cases implants contain electronics, e.g. artificial pacemaker and cochlear implants. Some implants are bioactive, such as subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.

<span class="mw-page-title-main">Artificial heart valve</span> Replacement of a valve in the human heart

An artificial heart valve is a one-way valve implanted into a person's heart to replace a heart valve that is not functioning properly. Artificial heart valves can be separated into three broad classes: mechanical heart valves, bioprosthetic tissue valves and engineered tissue valves.

<span class="mw-page-title-main">Organ printing</span> Printing method of creating artificial organs

Organ printing utilizes techniques similar to conventional 3D printing where a computer model is fed into a printer that lays down successive layers of plastics or wax until a 3D object is produced. In the case of organ printing, the material being used by the printer is a biocompatible plastic. The biocompatible plastic forms a scaffold that acts as the skeleton for the organ that is being printed. As the plastic is being laid down, it is also seeded with human cells from the patient's organ that is being printed for. After printing, the organ is transferred to an incubation chamber to give the cells time to grow. After a sufficient amount of time, the organ is implanted into the patient.

Articular cartilage, most notably that which is found in the knee joint, is generally characterized by very low friction, high wear resistance, and poor regenerative qualities. It is responsible for much of the compressive resistance and load bearing qualities of the knee joint and, without it, walking is painful to impossible. Osteoarthritis is a common condition of cartilage failure that can lead to limited range of motion, bone damage and invariably, pain. Due to a combination of acute stress and chronic fatigue, osteoarthritis directly manifests itself in a wearing away of the articular surface and, in extreme cases, bone can be exposed in the joint. Some additional examples of cartilage failure mechanisms include cellular matrix linkage rupture, chondrocyte protein synthesis inhibition, and chondrocyte apoptosis. There are several different repair options available for cartilage damage or failure.

<span class="mw-page-title-main">Biomaterial</span> Any substance that has been engineered to interact with biological systems for a medical purpose

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic or a diagnostic one. The corresponding field of study, called biomaterials science or biomaterials engineering, is about fifty years old. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

<span class="mw-page-title-main">Foreign body reaction</span> Medical condition

A foreign body reaction (FBR) is a typical tissue response to a foreign body within biological tissue. It usually includes the formation of a foreign body granuloma. Tissue-encapsulation of an implant is an example, as is inflammation around a splinter. Foreign body granuloma formation consists of protein adsorption, macrophages, multinucleated foreign body giant cells, fibroblasts, and angiogenesis. It has also been proposed that the mechanical property of the interface between an implant and its surrounding tissues is critical for the host response.

Neural tissue engineering is a specific sub-field of tissue engineering. Neural tissue engineering is primarily a search for strategies to eliminate inflammation and fibrosis upon implantation of foreign substances. Often foreign substances in the form of grafts and scaffolds are implanted to promote nerve regeneration and to repair damage caused to nerves of both the central nervous system (CNS) and peripheral nervous system (PNS) by an injury.

Nano-scaffolding or nanoscaffolding is a medical process used to regrow tissue and bone, including limbs and organs. The nano-scaffold is a three-dimensional structure composed of polymer fibers very small that are scaled from a Nanometer scale. Developed by the American military, the medical technology uses a microscopic apparatus made of fine polymer fibers called a scaffold. Damaged cells grip to the scaffold and begin to rebuild missing bone and tissue through tiny holes in the scaffold. As tissue grows, the scaffold is absorbed into the body and disappears completely.

A fibrin scaffold is a network of protein that holds together and supports a variety of living tissues. It is produced naturally by the body after injury, but also can be engineered as a tissue substitute to speed healing. The scaffold consists of naturally occurring biomaterials composed of a cross-linked fibrin network and has a broad use in biomedical applications.

Acellular dermis is a type of biomaterial derived from processing human or animal tissues to remove cells and retain portions of the extracellular matrix (ECM). These materials are typically cell-free, distinguishing them from classical allografts and xenografts, can be integrated or incorporated into the body, and have been FDA approved for human use for more than 10 years in a wide range of clinical indications.

<span class="mw-page-title-main">Surface modification of biomaterials with proteins</span>

Biomaterials are materials that are used in contact with biological systems. Biocompatibility and applicability of surface modification with current uses of metallic, polymeric and ceramic biomaterials allow alteration of properties to enhance performance in a biological environment while retaining bulk properties of the desired device.

<span class="mw-page-title-main">Decellularization</span>

Decellularization is the process used in biomedical engineering to isolate the extracellular matrix (ECM) of a tissue from its inhabiting cells, leaving an ECM scaffold of the original tissue, which can be used in artificial organ and tissue regeneration. Organ and tissue transplantation treat a variety of medical problems, ranging from end organ failure to cosmetic surgery. One of the greatest limitations to organ transplantation derives from organ rejection caused by antibodies of the transplant recipient reacting to donor antigens on cell surfaces within the donor organ. Because of unfavorable immune responses, transplant patients suffer a lifetime taking immunosuppressing medication. Stephen F. Badylak pioneered the process of decellularization at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. This process creates a natural biomaterial to act as a scaffold for cell growth, differentiation and tissue development. By recellularizing an ECM scaffold with a patient’s own cells, the adverse immune response is eliminated. Nowadays, commercially available ECM scaffolds are available for a wide variety of tissue engineering. Using peracetic acid to decellularize ECM scaffolds have been found to be false and only disinfects the tissue.

Decellularization of porcine heart valves is the removal of cells along with antigenic cellular elements by either physical or chemical decellularization of the tissue. This decellularized valve tissue provides a scaffold with the remaining extracellular matrix (ECM) that can then be used for tissue engineering and valve replacement in humans inflicted with valvular disease. Decellularized biological valves have potential benefit over conventional valves through decreased calcification which is thought to be an immuno-inflammatory response initiated by the recipient.

<span class="mw-page-title-main">3D bioprinting</span> Utilization of 3D printing to fabricate biomedical parts

Three dimensional (3D) bioprinting is the utilization of 3D printing–like techniques to combine cells, growth factors, and/or biomaterials to fabricate biomedical parts, often with the aim of imitating natural tissue characteristics. Generally, 3D bioprinting can utilize a layer-by-layer method to deposit materials known as bio-inks to create tissue-like structures that are later used in various medical and tissue engineering fields. 3D bioprinting covers a broad range of bioprinting techniques and biomaterials. Currently, bioprinting can be used to print tissue and organ models to help research drugs and potential treatments. Nonetheless, translation of bioprinted living cellular constructs into clinical application is met with several issues due to the complexity and cell number needed to create functional organs. However, innovations span from bioprinting of extracellular matrix to mixing cells with hydrogels deposited layer by layer to produce the desired tissue. In addition, 3D bioprinting has begun to incorporate the printing of scaffolds. These scaffolds can be used to regenerate joints and ligaments.

The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product. 

<span class="mw-page-title-main">Decellularized homografts</span>

Decellularized homografts are donated human heart valves which have been modified via tissue engineering. Several techniques exist for decellularization with the majority based on detergent or enzymatic protocols which aim to eliminate all donor cells while preserving the mechanical properties of the remaining matrix.

<span class="mw-page-title-main">Axel Haverich</span> German cardiac surgeon

Axel Haverich is a German cardiac surgeon.

Katja Schenke-Layland is the Professor of Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine at the University of Tübingen. She is the Director of the NMI Natural and Medical Sciences Institute at the University Tübingen in Reutlingen, Study Dean of Medical Technologies at the University of Tübingen, and Founding Director of the Institute of Biomedical Engineering at the Medical Faculty of the University Tübingen. She is also the Founding Director of the 3R Center for In Vitro Models and Alternatives to Animal Testing Tübingen.

Bioinstructive materials provide instruction to biological cells or tissue, for example immune instruction when monocytes are cultured on certain polymers they polarise to pro- or anti-inflammatory macrophages with potential applications in implanted devices, or materials for the repair of musculoskeletal tissues. Due to the paucity of information on the mechanism of materials control of cells, beyond the general recognition of the important role of adsorbed biomolecules, high throughput screening of large libraries of materials, topographies, and shapes are often used to identify cell instructive material systems. Applications of bioinstructive materials as substrates for stem cell production, cell delivery and reduction of foreign body reaction and coatings to reduce infections on medical devices. This non-leaching approach is distinct from strategies of infection control relying on antibiotic release, cytokine delivery or guidance of cells by surface located epitopes inspired by nature.

References

  1. Jegatheeswaran A, Butany J (2006). "Pathology of infectious and inflammatory diseases in prosthetic heart valves". Cardiovascular Pathology. 15 (5): 252–255. doi:10.1016/j.carpath.2006.05.002. PMID   16979031.
  2. 1 2 3 4 Mol A, Smits AI, Bouten CV, Baaijens FP (May 2009). "Tissue engineering of heart valves: advances and current challenges". Expert Review of Medical Devices. 6 (3): 259–75. doi:10.1586/erd.09.12. PMID   19419284. S2CID   5475108.
  3. Goldsmith I, Turpie AG, Lip GY (November 2002). "Valvar heart disease and prosthetic heart valves". BMJ. 325 (7374): 1228–31. doi:10.1136/bmj.325.7374.1228. PMC   1124694 . PMID   12446543.
  4. Bouten CV, Smits AI, Baaijens FP (2018-05-29). "Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering". Frontiers in Cardiovascular Medicine. 5: 54. doi: 10.3389/fcvm.2018.00054 . PMC   5987128 . PMID   29896481.
  5. O'Brien, Fergal J. (2011-03-01). "Biomaterials & scaffolds for tissue engineering". Materials Today. 14 (3): 88–95. doi: 10.1016/S1369-7021(11)70058-X . ISSN   1369-7021.
  6. Schmidt D, Stock UA, Hoerstrup SP (August 2007). "Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 362 (1484): 1505–12. doi:10.1098/rstb.2007.2131. PMC   2440411 . PMID   17588875.
  7. Gandaglia A, Bagno A, Naso F, Spina M, Gerosa G (April 2011). "Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations". European Journal of Cardio-Thoracic Surgery. 39 (4): 523–31. doi: 10.1016/j.ejcts.2010.07.030 . PMID   21163670.
  8. 1 2 3 4 5 6 Jana S, Tefft BJ, Spoon DB, Simari RD (July 2014). "Scaffolds for tissue engineering of cardiac valves". Acta Biomaterialia. 10 (7): 2877–93. doi:10.1016/j.actbio.2014.03.014. PMID   24675108.
  9. Xue Y, Sant V, Phillippi J, Sant S (January 2017). "Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves". Acta Biomaterialia. 48: 2–19. doi:10.1016/j.actbio.2016.10.032. PMID   27780764.
  10. Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015-05-14). "Cardiac tissue engineering and regeneration using cell-based therapy". Stem Cells and Cloning: Advances and Applications. 8: 81–101. doi: 10.2147/SCCAA.S54204 . PMC   4437607 . PMID   25999743.
  11. 1 2 3 4 5 6 Cheung DY, Duan B, Butcher JT (2015). "Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions". Expert Opinion on Biological Therapy. 15 (8): 1155–72. doi:10.1517/14712598.2015.1051527. PMC   4883659 . PMID   26027436.
  12. Loh QL, Choong C (December 2013). "Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size". Tissue Engineering Part B: Reviews. 19 (6): 485–502. doi:10.1089/ten.teb.2012.0437. PMC   3826579 . PMID   23672709.
  13. brahim DM, Kakarougkas A, Allam NK (2017). "Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves". Materials Today Chemistry. 5: 11–23. doi:10.1016/j.mtchem.2017.05.001. ISSN   2468-5194.
  14. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (May 2016). "Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects". Cytotechnology. 68 (3): 355–69. doi:10.1007/s10616-015-9895-4. PMC   4846637 . PMID   26091616.
  15. Zhu J, Marchant RE (September 2011). "Design properties of hydrogel tissue-engineering scaffolds". Expert Review of Medical Devices. 8 (5): 607–26. doi:10.1586/erd.11.27. PMC   3206299 . PMID   22026626.
  16. Morais JM, Papadimitrakopoulos F, Burgess DJ (June 2010). "Biomaterials/tissue interactions: possible solutions to overcome foreign body response". The AAPS Journal. 12 (2): 188–96. doi:10.1208/s12248-010-9175-3. PMC   2844517 . PMID   20143194.
  17. Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.; Malik, Asrar B. (2014-03-01). "Reactive Oxygen Species in Inflammation and Tissue Injury". Antioxidants & Redox Signaling. 20 (7): 1126–1167. doi:10.1089/ars.2012.5149. ISSN   1523-0864. PMC   3929010 . PMID   23991888.
  18. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (November 2008). "A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response". Journal of Diabetes Science and Technology. 2 (6): 1003–15. doi:10.1177/193229680800200610. PMC   2769826 . PMID   19885290.
  19. 1 2 Anderson JM, Rodriguez A, Chang DT (April 2008). "Foreign body reaction to biomaterials". Seminars in Immunology. 20 (2): 86–100. doi:10.1016/j.smim.2007.11.004. PMC   2327202 . PMID   18162407.
  20. 1 2 3 Williams D (May 2004). "Benefit and risk in tissue engineering". Materials Today. 7 (5): 24–29. doi: 10.1016/s1369-7021(04)00232-9 .
  21. 1 2 3 Mendelson K, Schoen FJ (December 2006). "Heart valve tissue engineering: concepts, approaches, progress, and challenges". Annals of Biomedical Engineering. 34 (12): 1799–819. doi:10.1007/s10439-006-9163-z. PMC   1705506 . PMID   17053986.
  22. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE (December 1995). "Tissue engineering heart valves: valve leaflet replacement study in a lamb model". The Annals of Thoracic Surgery. 60 (6 Suppl): S513-6. doi:10.1016/0003-4975(95)00733-4. PMID   8604922.
  23. Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE (November 2000). "Functional living trileaflet heart valves grown in vitro". Circulation. 102 (19 Suppl 3): III44-9. doi:10.1161/01.cir.102.suppl_3.iii-44. PMID   11082361. S2CID   42671847.
  24. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (November 2000). "Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue". Circulation. 102 (19 Suppl 3): III50-5. doi:10.1161/01.cir.102.suppl_3.iii-50. PMID   11082362. S2CID   6339507.
  25. Dohmen PM, Costa F, Lopes SV, Yoshi S, Souza FP, Vilani R, Costa MB, Konertz W (2005-03-09). "Results of a decellularized porcine heart valve implanted into the juvenile sheep model". The Heart Surgery Forum. 8 (2): E100–4, discussion E104. doi:10.1532/hsf98.20041140. PMID   15769723.
  26. Perry TE, Kaushal S, Sutherland FW, Guleserian KJ, Bischoff J, Sacks M, Mayer JE (March 2003). "Thoracic Surgery Directors Association Award. Bone marrow as a cell source for tissue engineering heart valves". The Annals of Thoracic Surgery. 75 (3): 761–7, discussion 767. doi:10.1016/S0003-4975(02)03776-1. PMID   12645690.
  27. Iwai S, Sawa Y, Ichikawa H, Taketani S, Uchimura E, Chen G, Hara M, Miyake J, Matsuda H (September 2004). "Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis". The Journal of Thoracic and Cardiovascular Surgery. 128 (3): 472–9. doi: 10.1016/j.jtcvs.2004.04.013 . PMID   15354111.
  28. Sutherland FW, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, Garcia GA, McLellan DL, Engelmayr GC, Sacks MS, Schoen FJ, Mayer JE (May 2005). "From stem cells to viable autologous semilunar heart valve". Circulation. 111 (21): 2783–91. doi: 10.1161/CIRCULATIONAHA.104.498378 . PMID   15927990.
  29. Matheny RG, Hutchison ML, Dryden PE, Hiles MD, Shaar CJ (November 2000). "Porcine small intestine submucosa as a pulmonary valve leaflet substitute". The Journal of Heart Valve Disease. 9 (6): 769–74, discussion 774–5. PMID   11128782.
  30. Elkins RC, Dawson PE, Goldstein S, Walsh SP, Black KS (May 2001). "Decellularized human valve allografts". The Annals of Thoracic Surgery. 71 (5 Suppl): S428-32. doi:10.1016/S0003-4975(01)02503-6. PMID   11388241.
  31. Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (June 2003). "Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients". European Journal of Cardio-Thoracic Surgery. 23 (6): 1002–6, discussion 1006. doi: 10.1016/S1010-7940(03)00094-0 . PMID   12829079.
  32. Sayk F, Bos I, Schubert U, Wedel T, Sievers HH (May 2005). "Histopathologic findings in a novel decellularized pulmonary homograft: an autopsy study". The Annals of Thoracic Surgery. 79 (5): 1755–8. doi:10.1016/j.athoracsur.2003.11.049. PMID   15854972.
  33. 1 2 Vesely I (October 2005). "Heart valve tissue engineering". Circulation Research. 97 (8): 743–55. doi: 10.1161/01.RES.0000185326.04010.9f . PMID   16224074.
  34. Konertz W, Dohmen PM, Liu J, Beholz S, Dushe S, Posner S, Lembcke A, Erdbrügger W (January 2005). "Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation". The Journal of Heart Valve Disease. 14 (1): 78–81. PMID   15700440.
  35. Lintas V, Fioretta ES, Motta SE, Dijkman PE, Pensalfini M, Mazza E, Caliskan E, Rodriguez H, Lipiski M, Sauer M, Cesarovic N, Hoerstrup SP, Emmert MY (December 2018). "Development of a Novel Human Cell-Derived Tissue-Engineered Heart Valve for Transcatheter Aortic Valve Replacement: an In Vitro and In Vivo Feasibility Study". Journal of Cardiovascular Translational Research. 11 (6): 470–482. doi:10.1007/s12265-018-9821-1. PMID   30105605. S2CID   51979398.
  36. Shinoka T, Miyachi H (November 2016). "Current Status of Tissue Engineering Heart Valve". World Journal for Pediatric & Congenital Heart Surgery. 7 (6): 677–684. doi:10.1177/2150135116664873. PMID   27834758. S2CID   42751256.
  37. Rippel RA, Ghanbari H, Seifalian AM (July 2012). "Tissue-engineered heart valve: future of cardiac surgery". World Journal of Surgery. 36 (7): 1581–91. doi:10.1007/s00268-012-1535-y. PMID   22395345. S2CID   2554899.