Toluidine blue

Last updated
Toluidine blue
Tolonium chloride.svg
Names
IUPAC name
(7-amino-8-methylphenothiazin-3-ylidene)-dimethylammonium chloride
Other names
Toluidine blue O
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.952 OOjs UI icon edit-ltr-progressive.svg
MeSH Tolonium+chloride
PubChem CID
UNII
  • InChI=1S/C15H16N3S.ClH/c1-9-6-13-15(8-11(9)16)19-14-7-10(18(2)3)4-5-12(14)17-13;/h4-8H,16H2,1-3H3;1H/q+1;/p-1 Yes check.svgY
    Key: HNONEKILPDHFOL-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/C15H16N3S.ClH/c1-9-6-13-15(8-11(9)16)19-14-7-10(18(2)3)4-5-12(14)17-13;/h4-8H,16H2,1-3H3;1H/q+1;/p-1
    Key: HNONEKILPDHFOL-REWHXWOFAY
  • [Cl-].CN(C)c1ccc2nc3cc(C)c(N)cc3[s+]c2c1
Properties
C15H16N3S+
Molar mass 270.374 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Toluidine blue, also known as TBO or tolonium chloride (INN) is a blue cationic (basic) dye used in histology (as the toluidine blue stain) and sometimes clinically.

Contents

Test for lignin

Toluidine blue solution is used in testing for lignin, a complex organic molecule that bonds to cellulose fibres and strengthens and hardens the cell walls in plants. A positive toluidine blue test causes the solution to turn from blue to blue-green. [1] A similar test can be performed with phloroglucinol-HCl solution, which turns red.

Histological uses

Toluidine blue stain in a vasculitic peripheral neuropathy. Vasculitic neuropathy -n- plastics - high mag.jpg
Toluidine blue stain in a vasculitic peripheral neuropathy.

Toluidine blue is a basic thiazine metachromatic dye with high affinity for acidic tissue components. [2] It stains nucleic acids blue and polysaccharides purple and also increases the sharpness of histology slide images. It is especially useful today for staining chromosomes in plant or animal tissues, as a replacement for Aceto-orcein stain.

Toluidine blue is often used to identify mast cells, by virtue of the heparin in their cytoplasmic granules. [3] It is also used to stain proteoglycans and glycosaminoglycans in tissues such as cartilage. The strongly acidic macromolecular carbohydrates of mast cells and cartilage are coloured red by the blue dye, a phenomenon called metachromasia.

Alkaline solutions of toluidine blue are commonly used for staining semi-thin (0.5 to 1 μm) sections of resin-embedded tissue. At high pH (about 10) the dye binds to nucleic acids and all proteins. Although everything in the tissue is stained, structural details are clearly visible because of the thinness of the sections. Semi-thin sections are used in conjunction with ultra-thin sections examined by electron microscopy.

Toluidine blue is also commonly used to stain frozen sections (rapid microscopic analysis of a specimen). Because time is of the essence for a frozen section, toluidine blue allows for the frozen section to be stained and reviewed in 10-20 seconds. [4] The other staining method for frozen sections (rapid H&E) takes approximately 60 to 90 seconds.

The results depend on the studied organs: [5]

It is used in forensic examination, [6] renal pathology [7] and neuropathology.

Clinical uses

The dye is sometimes used by surgeons to help highlight areas of mucosal dysplasia (which preferentially take up the dye compared to normal tissue) in premalignant lesions (e.g. leukoplakia). [8] This can be used to choose the best site of the lesion to biopsy, or during surgery to remove the lesion to decide whether to remove more tissue from the margins of the excision defect or leave it behind.

See also

Related Research Articles

<span class="mw-page-title-main">Histology</span> Study of the microscopic anatomy of cells and tissues of plants and animals

Histology, also known as microscopic anatomy or microanatomy, is the branch of biology that studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures visible without a microscope. Although one may divide microscopic anatomy into organology, the study of organs, histology, the study of tissues, and cytology, the study of cells, modern usage places all of these topics under the field of histology. In medicine, histopathology is the branch of histology that includes the microscopic identification and study of diseased tissue. In the field of paleontology, the term paleohistology refers to the histology of fossil organisms.

<span class="mw-page-title-main">Haematoxylin</span> Natural stain derived from hearthwood and used in histology

Haematoxylin or hematoxylin, also called natural black 1 or C.I. 75290, is a compound extracted from heartwood of the logwood tree with a chemical formula of C
16
H
14
O
6
. This naturally derived dye has been used as a histologic stain, as an ink and as a dye in the textile and leather industry. As a dye, haematoxylin has been called palo de Campeche, logwood extract, bluewood and blackwood. In histology, haematoxylin staining is commonly followed by counterstaining with eosin. When paired, this staining procedure is known as H&E staining and is one of the most commonly used combinations in histology. In addition to its use in the H&E stain, haematoxylin is also a component of the Papanicolaou stain which is widely used in the study of cytology specimens.

<span class="mw-page-title-main">Xylene</span> Organic compounds with the formula (CH3)2C6H4

In organic chemistry, xylene or xylol are any of three organic compounds with the formula (CH3)2C6H4. They are derived from the substitution of two hydrogen atoms with methyl groups in a benzene ring; which hydrogens are substituted determines which of three structural isomers results. It is a colorless, flammable, slightly greasy liquid of great industrial value.

<span class="mw-page-title-main">Staining</span> Technique used to enhance visual contrast of specimens observed under a microscope

Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology, in cytology, and in the medical fields of histopathology, hematology, and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues, cell populations, or organelles within individual cells.

<span class="mw-page-title-main">Histopathology</span> Microscopic examination of tissue in order to study and diagnose disease

Histopathology refers to the microscopic examination of tissue in order to study the manifestations of disease. Specifically, in clinical medicine, histopathology refers to the examination of a biopsy or surgical specimen by a pathologist, after the specimen has been processed and histological sections have been placed onto glass slides. In contrast, cytopathology examines free cells or tissue micro-fragments.

Trichrome staining is a histological staining method that uses two or more acid dyes in conjunction with a polyacid. Staining differentiates tissues by tinting them in contrasting colours. It increases the contrast of microscopic features in cells and tissues, which makes them easier to see when viewed through a microscope.

<span class="mw-page-title-main">Cementoblastoma</span> Medical condition

Cementoblastoma, or benign cementoblastoma, is a relatively rare benign neoplasm of the cementum of the teeth. It is derived from ectomesenchyme of odontogenic origin. Cementoblastomas represent less than 0.69–8% of all odontogenic tumors.

<span class="mw-page-title-main">Periodic acid–Schiff stain</span> Histological staining method

Periodic acid–Schiff (PAS) is a staining method used to detect polysaccharides such as glycogen, and mucosubstances such as glycoproteins, glycolipids and mucins in tissues. The reaction of periodic acid oxidizes the vicinal diols in these sugars, usually breaking up the bond between two adjacent carbons not involved in the glycosidic linkage or ring closure in the ring of the monosaccharide units that are parts of the long polysaccharides, and creating a pair of aldehydes at the two free tips of each broken monosaccharide ring. The oxidation condition has to be sufficiently regulated so as to not oxidize the aldehydes further. These aldehydes then react with the Schiff reagent to give a purple-magenta color. A suitable basic stain is often used as a counterstain.

Metachromasia is a characteristical change in the color of staining carried out in biological tissues, exhibited by certain dyes when they bind to particular substances present in these tissues, called chromotropes. For example, toluidine blue becomes dark blue when bound to cartilage. Other widely used metachromatic stains is the family of Romanowsky stains that also contain thiazine dyes: the white cell nucleus stains purple, basophil granules intense magenta, whilst the cytoplasms stains blue, which is called the Romanowsky effect. The absence of color change in staining is named orthochromasia.

The oral mucosa is the mucous membrane lining the inside of the mouth. It comprises stratified squamous epithelium, termed "oral epithelium", and an underlying connective tissue termed lamina propria. The oral cavity has sometimes been described as a mirror that reflects the health of the individual. Changes indicative of disease are seen as alterations in the oral mucosa lining the mouth, which can reveal systemic conditions, such as diabetes or vitamin deficiency, or the local effects of chronic tobacco or alcohol use. The oral mucosa tends to heal faster and with less scar formation compared to the skin. The underlying mechanism remains unknown, but research suggests that extracellular vesicles might be involved.

<span class="mw-page-title-main">Papanicolaou stain</span> Histological staining method

Papanicolaou stain is a multichromatic (multicolored) cytological staining technique developed by George Papanicolaou in 1942. The Papanicolaou stain is one of the most widely used stains in cytology, where it is used to aid pathologists in making a diagnosis. Although most notable for its use in the detection of cervical cancer in the Pap test or Pap smear, it is also used to stain non-gynecological specimen preparations from a variety of bodily secretions and from small needle biopsies of organs and tissues. Papanicolaou published three formulations of this stain in 1942, 1954, and 1960.

<span class="mw-page-title-main">H&E stain</span> Histological stain method

Hematoxylin and eosin stain is one of the principal tissue stains used in histology. It is the most widely used stain in medical diagnosis and is often the gold standard. For example, when a pathologist looks at a biopsy of a suspected cancer, the histological section is likely to be stained with H&E.

<span class="mw-page-title-main">Phosphotungstic acid-haematoxylin stain</span> Biological stain used for staining of tissues

Phosphotungstic acid haematoxylin (PTAH) is a mix of haematoxylin with phosphotungstic acid, used in histology for staining.

Giant-cell fibroma is a benign localized fibrous mass. It often mimics other fibroepithelial growths and can be distinguished by its histopathology. The exact cause of giant-cell fibromas is unknown however there is no evidence to show that it can be caused by irritation. Giant-cell fibromas can be removed by surgical incision, electrosurgery, or laser excision.

<span class="mw-page-title-main">Calcifying odontogenic cyst</span> Medical condition

Calcifying odontogenic cyst (COC) is a rare developmental lesion that comes from odontogenic epithelium. It is also known as a calcifying cystic odontogenic tumor, which is a proliferation of odontogenic epithelium and scattered nest of ghost cells and calcifications that may form the lining of a cyst, or present as a solid mass.

<span class="mw-page-title-main">Glandular odontogenic cyst</span> Human jaw cyst

A glandular odontogenic cyst (GOC) is a rare and usually benign odontogenic cyst developed at the odontogenic epithelium of the mandible or maxilla. Originally, the cyst was labeled as "sialo-odontogenic cyst" in 1987. However, the World Health Organization (WHO) decided to adopt the medical expression "glandular odontogenic cyst". Following the initial classification, only 60 medically documented cases were present in the population by 2003. GOC was established as its own biological growth after differentiation from other jaw cysts such as the "central mucoepidermoid carcinoma (MEC)", a popular type of neoplasm at the salivary glands. GOC is usually misdiagnosed with other lesions developed at the glandular and salivary gland due to the shared clinical signs. The presence of osteodentin supports the concept of an odontogenic pathway. This odontogenic cyst is commonly described to be a slow and aggressive development. The inclination of GOC to be large and multilocular is associated with a greater chance of remission. GOC is an infrequent manifestation with a 0.2% diagnosis in jaw lesion cases. Reported cases show that GOC mainly impacts the mandible and male individuals. The presentation of GOC at the maxilla has a very low rate of incidence. The GOC development is more common in adults in their fifth and sixth decades.

<span class="mw-page-title-main">Visual artifact</span>

Visual artifacts are anomalies apparent during visual representation as in digital graphics and other forms of imagery, especially photography and microscopy.

<span class="mw-page-title-main">Alcian blue stain</span> Chemical compound

Alcian blue is any member of a family of polyvalent basic dyes, of which the Alcian blue 8G has been historically the most common and the most reliable member. It is used to stain acidic polysaccharides such as glycosaminoglycans in cartilages and other body structures, some types of mucopolysaccharides, sialylated glycocalyx of cells etc. For many of these targets it is one of the most widely used cationic dyes for both light and electron microscopy. Use of alcian blue has historically been a popular staining method in histology especially for light microscopy in paraffin embedded sections and in semithin resin sections. The tissue parts that specifically stain by this dye become blue to bluish-green after staining and are called "Alcianophilic". Alcian blue staining can be combined with H&E staining, PAS staining and van Gieson staining methods. Alcian blue can be used to quantitate acidic glycans both in microspectrophotometric quantitation in solution or for staining glycoproteins in polyacrylamide gels or on western blots. Biochemists had used it to assay acid polysaccharides in urine since the 1960s for diagnosis of diseases like mucopolysaccharidosis but from 1970's, partly due to lack of availability of Alcian and partly due to length and tediousness of the procedure, alternative methods had to be developed e.g. Dimethyl methylene blue method.

<span class="mw-page-title-main">Perls Prussian blue</span> Histologic method to stain for iron

In histology, histopathology, and clinical pathology, Perls Prussian blue is a commonly used method to detect the presence of iron in tissue or cell samples. Perls Prussian Blue derives its name from the German pathologist Max Perls (1843–1881), who described the technique in 1867. The method does not involve the application of a dye, but rather causes the pigment Prussian blue to form directly within the tissue. The method stains mostly iron in the ferric state which includes ferritin and hemosiderin, rather than iron in the ferrous state.

Bouin solution, or Bouin's solution, is a compound fixative used in histology. It was invented by French biologist Pol Bouin and is composed of picric acid, acetic acid and formaldehyde in an aqueous solution. Bouin's fluid is especially useful for fixation of gastrointestinal tract biopsies because this fixative allows crisper and better nuclear staining than 10% neutral-buffered formalin. It is not a good fixative when tissue ultrastructure must be preserved for electron microscopy. However, it is a good fixative when tissue structure with a soft and delicate texture must be preserved. The acetic acid in this fixative lyses red blood cells and dissolves small iron and calcium deposits in tissue. A variant in which the acetic acid is replaced with formic acid can be used for both fixation of tissue and decalcification. The effects of the three chemicals in Bouin solution balance each other. Formalin causes cytoplasm to become basophilic but this effect is balanced by the effect of the picric acid. This results in excellent nuclear and cytoplasmic H&E staining. The tissue hardening effect of formalin is balanced by the soft tissue fixation of picric and acetic acids. The tissue swelling effect of acetic acid is balanced by the tissue shrinking effect of picric acid.

References

  1. Reitz, Nicholas (27 January 2021). "Lignification of tomato (Solanum lycopersicum) pericarp tissue during blossom-end rot development". Scientia Horticulturae. 276. doi:10.1016/j.scienta.2020.109759. S2CID   225141378.
  2. Sridharan, G; Shankar, AA (2012). "Toluidine blue: A review of its chemistry and clinical utility". J Oral Maxillofac Pathol. 16 (2): 251–5. doi: 10.4103/0973-029X.99081 . PMC   3424943 . PMID   22923899.
  3. Carson, Freida L; Hladik, Christa (2009). Histotechnology: A Self-Instructional Text (3 ed.). Hong Kong: American Society for Clinical Pathology Press. p. 188. ISBN   978-0-89189-581-7.
  4. Sridharan G, Shankar A. "Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol. 2012 May-Aug; 16(2):251-255
  5. "Toluidine blue". Histalim. Archived from the original on 2018-07-01. Retrieved 2020-03-15.
  6. Olshaker, Jackson and Smock (2001). Forensic Emergency Medicine. Philadelphia: Lippincott, Williams and Williams. pp. 94–97. ISBN   0781731445.
  7. Nicholas, SB.; Basgen, JM.; Sinha, S. (2011). "Using stereologic techniques for podocyte counting in the mouse: shifting the paradigm". Am J Nephrol. 33 (Suppl 1): 1–7. doi:10.1159/000327564. PMC   3121548 . PMID   21659728.
  8. Scully, C; Porter, S (Jul 22, 2000). "ABC of oral health. Swellings and red, white, and pigmented lesions". BMJ (Clinical Research Ed.). 321 (7255): 225–8. doi:10.1136/bmj.321.7255.225. PMC   1118223 . PMID   10903660.

Further reading