Total absorption spectroscopy

Last updated
Hypothetical beta decay seen by high-resolution (germanium mainly) and TAS detectors. There is a change in philosophy when measuring with a TAS. With a germanium detector (Ge), the energy peaks corresponding to individual gammas are seen, but the TAS detector gives a spectrum of the levels populated in the decay (ideal TAS). The TAS detector has less resolution but higher efficiency. High resolution gamma spectrum vs. TAS gamma spectrum.png
Hypothetical beta decay seen by high-resolution (germanium mainly) and TAS detectors. There is a change in philosophy when measuring with a TAS. With a germanium detector (Ge), the energy peaks corresponding to individual gammas are seen, but the TAS detector gives a spectrum of the levels populated in the decay (ideal TAS). The TAS detector has less resolution but higher efficiency.

Total absorption spectroscopy is a measurement technique that allows the measurement of the gamma radiation emitted in the different nuclear gamma transitions that may take place in the daughter nucleus after its unstable parent has decayed by means of the beta decay process. [1] This technique can be used for beta decay studies related to beta feeding measurements within the full decay energy window for nuclei far from stability.

Contents

It is implemented with a special type of detector, the "total absorption spectrometer" (TAS), made of a scintillator crystal that almost completely surrounds the activity to be measured, covering a solid angle of approximately 4π. Also, in an ideal case, it should be thick enough to have a peak efficiency close to 100%, in this way its total efficiency is also very close to 100% (this is one of the reasons why it is called "total" absorption spectroscopy). Finally, it should be blind to any other type of radiation. The gamma rays produced in the decay under study are collected by photomultipliers attached to the scintillator material. This technique may solve the problem of the Pandemonium effect.

There is a change in philosophy when measuring with a TAS. Instead of detecting the individual gamma rays (as high-resolution detectors do), it will detect the gamma cascades emitted in the decay. Then, the final energy spectrum will not be a collection of different energy peaks coming from the different transitions (as can be expected in the case of a germanium detector), but a collection of peaks situated at an energy that is the sum of the different energies of all the gammas of the cascade emitted from each level. This means that the energy spectrum measured with a TAS will be in reality a spectrum of the levels of the nuclei, where each peak is a level populated in the decay. Since the efficiency of these detectors is close to 100%, it is possible to see the feeding to the high excitation levels that usually can not be seen by high-resolution detectors. This makes total absorption spectroscopy the best method to measure beta feedings and provide accurate beta intensity (Iβ) distributions for complex decay schemes.

In an ideal case, the measured spectrum would be proportional to the beta feeding (Iβ). But a real TAS has limited efficiency and resolution, and also the Iβ has to be extracted from the measured spectrum, which depends on the spectrometer response. The analysis of TAS data is not simple: to obtain the strength from the measured data, a deconvolution process should be applied.

Analysis method for TAS data

The complex analysis of the data measured with the TAS can be reduced to the solution of a linear problem:

d = Ri

given that it relates the measured data (d) with the feedings (i) from which the beta intensity distribution Iβ can be obtained.

R is the response matrix of the detector (meaning the probability that a decay that feeds a certain level gives a count in certain bin of the spectrum). The function R depends on the detector but also of the particular level scheme that is being measured. To be able to extract the value of i from the data d the equation has to be inverted (this equation is also called the " inverse problem ").

Unfortunately this can not be done easily because there is similar response to the feeding of adjacent levels when they are at high excitation energies where the level density is high. In other words, this is one of the so-called "ill-posed" problems, for which several sets of parameters can reproduce closely the same data set. Then, to find i, the response has to be obtained for which the branching ratios and a precise simulation of the geometry of the detector are needed. The higher the efficiency of the TAS used, the lower the dependence of the response on the branching ratios will be. Then it is possible to introduce the unknown branching ratios by hand from a plausible guess. A good guess can be calculated by means of the Statistical Model.

Then the procedure to find the feedings is iterative: using the expectation-maximization algorithm to solve the inverse problem, [2] Then the procedure to find the feedings is iterative: using the expectation-maximization algorithm to solve the inverse problem, [3] the feedings are extracted; if they don't reproduce the experimental data, it means that the initial guess of the branching ratios is wrong and has to be changed (of course, it is possible to play with other parameters of the analysis). Repeating this procedure iteratively in a reduced number of steps, the data is finally reproduced.

Branching ratio calculation

The best way to handle this problem is to keep a set of discrete levels at low excitation energies and a set of binned levels at high energies. The set at low energies is supposed to be known and can be taken from databases (for example, the [ENSDF] database, [4] which has information from what has been already measured with the high resolution technique). The set at high energies is unknown and does not overlap with the known part. At the end of this calculation, the whole region of levels inside the Q value window (known and unknown) is binned.

At this stage of the analysis it is important to know the internal conversion coefficients for the transitions connecting the known levels. The internal conversion coefficient is defined as the number of de-excitations via e− emission over those via γ emission. If internal conversion takes place, the EM multipole fields of the nucleus do not result in the emission of a photon, instead, the fields interact with the atomic electrons and cause one of the electrons to be emitted from the atom. The gamma that would be emitted after the beta decay is missed, and the γ intensity decreases accordingly: IT = Iγ + Ie− = Iγ(1 + αe), so this phenomenon has to be taken into account in the calculation. Also, the x rays will be contaminated with those coming from the electron conversion process. This is important in electron capture decay, as it can affect the results of any x-ray gated spectra if the internal conversion is strong. Its probability is higher for lower energies and high multipolarities.

One of the ways to obtain the whole branching ratio matrix is to use the Statistical Nuclear Model. This model generates a binned branching ratio matrix from average level densities and average gamma strength functions. For the unknown part, average branching ratios can be calculated, for which several parameterizations may be chosen, while for the known part the information in the databases is used.

Response simulation

It is not possible to produce gamma sources that emit all the energies needed to calculate accurately the response of a TAS detector. For this reason, it is better to perform a Montecarlo simulation of the response. For this simulation to be reliable, the interactions of all the particles emitted in the decay (γ, e−/e+, Auger e, x rays, etc.) have to be modeled accurately, and the geometry and materials in the way of these particles have to be well reproduced. Also, the light production of the scintillator has to be included. The way to perform this simulation is explained in detail in paper by D. Cano-Ott et al. [5] GEANT3 and GEANT4 are well suited for these kind of simulations.

If the scintillator material of the TAS detector suffers from a non proportionality in the light production, [6] the peaks produced by a cascade will be displaced further for every increment in the multiplicity and the width of these peaks will be different from the width of single peaks with the same energy. This effect can be introduced in the simulation by means of a hyperbolic scintillation efficiency. [7]

The simulation of the light production will widen the peaks of the TAS spectrum; however, this still does not reproduce the real width of the experimental peaks. During the measurement there are additional statistical processes that affect the energy collection and are not included in the Montecarlo. The effect of this is an extra widening of the TAS experimental peaks. Since the peaks reproduced with the Montecarlo do not have the correct width, a convolution with an empirical instrumental resolution distribution has to be applied to the simulated response.

Finally, if the data to be analyzed comes from electron capture events, a simulated gamma response matrix must be built using the simulated responses to individual monoenergetic γ rays of several energies. This matrix contains the information related to the dependence of the response function on the detector. To include also the dependence on the level scheme that is being measured, the above-mentioned matrix should be convoluted with the branching ratio matrix calculated previously. In this way, the final global response R is obtained.

Ancillary detectors

An important thing to have in mind when using the TAS technique is that, if nuclei with short half-lifes are measured, the energy spectrum will be contaminated with the gamma cascades of the daughter nuclei produced in the decay chain. Normally the TAS detectors have the possibility to place ancillary detectors inside of them, to measure secondary radiation like X-rays, electrons or positrons. In this way it is possible to tag the other components of the decay during the analysis, allowing to separate the contributions coming from all the different nuclei (isobaric separation).

TAS detectors in the world

TAS at ISOLDE

In 1970, a spectrometer consisting of two cylindrical NaI detectors of 15 cm diameter and 10 cm length was used at ISOLDE. [8]

TAS at GSI

The TAS Measuring Station installed at the GSI [9] had a tape transport system that allowed the collection of the ions coming out of the separator (they were implanted in the tape), and the transportation of those ions from the collection position to the center of the TAS for the measurement (by means of the movement of the tape). The TAS at this facility was made of a cylindrical NaI crystal of Φ = h = 35.6 cm, with a concentric cylindrical hole in the direction of the symmetry axis. This hole was filled by a plug detector (4.7x15.0 cm) with a holder that allowed the placement of ancillary detectors and two rollers for a tape.

Lucrecia measuring station

Lucrecia measuring station where the shielding can be seen in white as well as the beam line that delivers the radioactive species. Lucrecia TAS detector at ISOLDE hall at CERN.png
Lucrecia measuring station where the shielding can be seen in white as well as the beam line that delivers the radioactive species.

This measuring station, installed at the end of one of the ISOLDE beamlines, consists of a TAS, and a tape station. [10]

In this station, a beam pipe is used to hold the tape. The beam is implanted in the tape outside of the TAS, which is then transported to the center of the detector for the measurement. [10] In this station it is also possible to implant the beam directly in the center of the TAS, by changing the position of the rollers. The latter procedure allows the measurement of more exotic nuclei with very short half-lives.[ citation needed ]

Lucrecia is the TAS at this station. It is made of one piece of NaI(Tl) material cylindrically shaped with φ = h = 38 cm (the largest ever built to our knowledge). It has a cylindrical cavity of 7.5 cm diameter that goes through perpendicularly to its symmetry axis. The purpose of this hole is to allow the beam pipe to reach the measurement position so that the tape can be positioned in the center of the detector. It also allows the placement of ancillary detectors in the opposite side to measure other types of radiation emitted by the activity implanted in the tape (x rays, e−/e+, etc.). [11] However, the presence of this hole makes this detector less efficient as compared to the GSI TAS (Lucrecia’s total efficiency is around 90% from 300 to 3000 keV). [12] Lucrecia’s light is collected by 8 photomultipliers. [13] During the measurements Lucrecia is kept measuring at a total counting rate not larger than 10 kHz to avoid second and higher order pileup contributions. [14]

Surrounding the TAS there is a shielding box 19.2 cm thick made of four layers: polyethylene, lead, copper and aluminium. The purpose of it is to absorb most of the external radiation (neutrons, cosmic rays, and the room background). [15]

See also

Related Research Articles

Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy, nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

<span class="mw-page-title-main">Scintillation counter</span> Instrument for measuring ionizing radiation

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

<span class="mw-page-title-main">Scintillator</span> Material which glows when excited by ionizing radiation

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

<span class="mw-page-title-main">Gamma-ray spectrometer</span> Instrument for measuring gamma radiation

A gamma-ray spectrometer (GRS) is an instrument for measuring the distribution of the intensity of gamma radiation versus the energy of each photon. The study and analysis of gamma-ray spectra for scientific and technical use is called gamma spectroscopy, and gamma-ray spectrometers are the instruments which observe and collect such data. Because the energy of each photon of EM radiation is proportional to its frequency, gamma rays have sufficient energy that they are typically observed by counting individual photons.

Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics. Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

<span class="mw-page-title-main">Mössbauer spectroscopy</span> Spectroscopic technique

Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer in 1958, consists of the nearly recoil-free emission and absorption of nuclear gamma rays in solids. The consequent nuclear spectroscopy method is exquisitely sensitive to small changes in the chemical environment of certain nuclei.

In health physics, whole-body counting refers to the measurement of radioactivity within the human body. The technique is primarily applicable to radioactive material that emits gamma rays. Alpha particle decays can also be detected indirectly by their coincident gamma radiation. In certain circumstances, beta emitters can be measured, but with degraded sensitivity. The instrument used is normally referred to as a whole body counter.

<span class="mw-page-title-main">Gamma ray</span> Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

<span class="mw-page-title-main">Pandemonium effect</span>

The pandemonium effect is a problem that may appear when high-resolution detectors are used in beta decay studies. It can affect the correct determination of the feeding to the different levels of the daughter nucleus. It was first introduced in 1977.

<span class="mw-page-title-main">Neutron Time Of Flight</span> Facility at CERN with a neutron source

The Neutron Time Of Flight (n_TOF) facility is a neutron spectrometer at CERN, with the aim of studying neutron-nucleus interactions over a range of kinetic energies, using the time of flight method. The research conducted at the facility has applications in nuclear technology and nuclear astrophysics. The facility has been in operation at CERN since 2001, following a proposal from the former Director General, Carlo Rubbia, for a high-intensity neutron source.

Nuclear forensics is the investigation of nuclear materials to find evidence for the source, the trafficking, and the enrichment of the material. The material can be recovered from various sources including dust from the vicinity of a nuclear facility, or from the radioactive debris following a nuclear explosion.

Conversion electron Mössbauer spectroscopy (CEMS) is a Mössbauer spectroscopy technique based on conversion electron.

<span class="mw-page-title-main">Radionuclide identification device</span>

A radionuclide identification device is a small, lightweight, portable gamma-ray spectrometer used for the detection and identification of radioactive substances. It is available from many companies in various forms to provide hand-held gamma-ray radionuclide identification. Since these instruments are easily carried, they are suitable for first-line responders in key applications of Homeland Security, Environmental Monitoring and Radiological Mapping. These devices have also found their usefulness in medical and industrial applications as well as a number of unique applications such as geological surveys. In the past two decades RIIDs have addressed the growing demand for fast, accurate isotope identification. These light-weight instruments require room temperature detectors so they can be easily carried and perform meaningful measurements in various environments and locations.

<span class="mw-page-title-main">Multichannel analyzer</span>

A multichannel analyzer (MCA) is an instrument used in laboratory and field applications to analyze an input signal consisting of voltage pulses. MCAs are used extensively in digitizing various spectroscopy measurements, especially those related to nuclear physics, including various types of spectroscopy.

<span class="mw-page-title-main">ISOLDE Decay Station experiment</span>

The ISOLDE Decay Station (IDS) is a permanent experiment located in the ISOLDE facility at CERN. The purpose of the experiment is to measure decay properties of radioactive isotopes using spectroscopy techniques for a variety of applications, including nuclear engineering and astrophysics. The experimental setup has been operational since 2014.

<span class="mw-page-title-main">LUCRECIA experiment</span>

The LUCRECIA experiment is a permanent experimental setup at the ISOLDE facility at CERN. The purpose of LUCRECIA is to analyse nuclear structure and use this to confirm theoretical models and make stellar predictions. The experiment is based on a Total Absorption gamma Spectrometer (TAS) designed to measure beta ray feeding.

<span class="mw-page-title-main">WISArD experiment</span> Experimental setup at CERN

The Weak Interaction Studies with 32Ar Decay (WISArD) experiment is a permanent experimental setup located in the ISOLDE facility, at CERN. The purpose of the experiment is to investigate the weak interaction by looking for beta-delayed protons emitted from a nucleus. In the absence of online isotope production during Long Shutdown 2, the experimental setup has also been used to measure the shape of the beta energy spectrum. A goal of the experiment is to search for physics beyond the Standard Model (SM) by expanding the existing limits on currents in the weak interaction.

References

  1. Rubio, B.; Gelletly, W. (2007). "Total absorption spectroscopy" (PDF). Romanian Reports in Physics. 59 (2): 635–654.
  2. Tain, J. L.; Cano-Ott, D. (2007). "The influence of the unknown de-excitation pattern in the analysis of β-decay total absorption spectra". Nuclear Instruments and Methods in Physics Research Section A. 571 (3): 719–728. Bibcode:2007NIMPA.571..719T. doi:10.1016/j.nima.2006.09.084.
  3. Tain, J. L.; Cano-Ott, D. (2007). "The influence of the unknown de-excitation pattern in the analysis of β-decay total absorption spectra". Nuclear Instruments and Methods in Physics Research Section A. 571 (3): 719–728. Bibcode:2007NIMPA.571..719T. doi:10.1016/j.nima.2006.09.084.
  4. Evaluated Nuclear Structure Data File (ENSDF) http://www.nndc.bnl.gov/ensdf/
  5. Cano-Ott, D.; et al. (1999). "Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape". Nuclear Instruments and Methods in Physics Research Section A. 430 (2–3): 488–497. Bibcode:1999NIMPA.430..488C. doi:10.1016/S0168-9002(99)00216-8.
  6. Engelkemeir, D. (1956). "Nonlinear Response of NaI(Tl) to Photons". Rev. Sci. Instrum. 27 (8): 589–591. Bibcode:1956RScI...27..589E. doi:10.1063/1.1715643.
  7. Cano-Ott, D. (1998).{{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help)
  8. Duke, C.L.; et al. (1970). "Strength-function phenomena in electron-capture beta decay". Nuclear Physics A. 151 (3): 609–633. Bibcode:1970NuPhA.151..609D. doi:10.1016/0375-9474(70)90400-8.
  9. Karny, M.; et al. (1997). "Coupling a total absorption spectrometer to the GSI on-line mass separator". Nuclear Instruments and Methods in Physics Research Section B. 126 (1): 411–415. Bibcode:1997NIMPB.126..411K. doi:10.1016/S0168-583X(96)01007-5.
  10. 1 2 Nacher, Enrique; Algora, Alejandro; Berta, Rubio (8 Jan 2020). "Upgrade and scientific programme of LUCRECIA, the Total Absorption Spectrometer at ISOLDE". CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee.
  11. Nácher, E; Algora, A; Rubio, B; Taı́n, J. L; Cano-Ott, D; Borge, M. J. G; Courtin, S; Dessagne, Ph; Escrig, D; Fraile, L. M; Gelletly, W; Jungclaus, A; Le Scornet, G; Maréchal, F; Miehé, Ch (2004-04-05). "Total absorption spectroscopy of 76Sr with the Lucrecia spectrometer at ISOLDE". Nuclear Physics A. Proceedings of the Eighth International Conference on Nucleus-Nucleus Collisions (NN2003). 734: E84–E87. doi:10.1016/j.nuclphysa.2004.03.026. ISSN   0375-9474.
  12. Algora, A.; Ganioğlu, E.; Sarriguren, P.; Guadilla, V.; Fraile, L. M.; Nácher, E.; Rubio, B.; Tain, J. L.; Agramunt, J.; Gelletly, W.; Briz, J. A.; Cakirli, R. B.; Fallot, M.; Jordán, D.; Halász, Z. (2021-08-10). "Total absorption gamma-ray spectroscopy study of the β-decay of 186Hg". Physics Letters B. 819: 136438. doi:10.1016/j.physletb.2021.136438. hdl: 10261/261345 . ISSN   0370-2693. S2CID   242131457.
  13. Briz, J. A.; Nácher, E.; Borge, M. J. G.; Algora, A.; Rubio, B.; Taín, J. L.; Cano-Ott, D.; Courtin, S.; Dessagne, Ph.; Maréchal, F.; Miehé, Ch.; Poirier, E.; Escrig, D.; Jungclaus, A.; Tengblad, O. (30 June 2015). Total Absorption Spectroscopy of the N=Z Nucleus 72 Kr. Journal of the Physical Society of Japan. doi: 10.7566/JPSCP.6.020050 . ISBN   978-4-89027-110-8.
  14. Guadilla, Victor; Pfützner, Marek; Agramunt, Jorge; Algora, Alejandro; et al. (5 Jan 2021). "Beta-decay spectroscopy of 27Na and 22O for isospin asymmetry studies in the sd shell". CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee.
  15. Nácher, E; Algora, A; Rubio, B; Taı́n, J. L; Cano-Ott, D; Borge, M. J. G; Courtin, S; Dessagne, Ph; Escrig, D; Fraile, L. M; Gelletly, W; Jungclaus, A; Le Scornet, G; Maréchal, F; Miehé, Ch (2004-04-05). "Total absorption spectroscopy of 76Sr with the Lucrecia spectrometer at ISOLDE". Nuclear Physics A. Proceedings of the Eighth International Conference on Nucleus-Nucleus Collisions (NN2003). 734: E84–E87. doi:10.1016/j.nuclphysa.2004.03.026. ISSN   0375-9474.