Transpirational cooling (biological)

Last updated

Transpirational cooling is the cooling provided as plants transpire water. Excess heat generated from solar radiation is damaging to plant cells and thermal injury occurs during drought or when there is rapid transpiration which produces wilting. [1] Green vegetation contributes to moderating climate by being cooler than adjacent bare earth or constructed areas. As plant leaves transpire they use energy to evaporate water aggregating up to a huge volume globally every day.

Contents

An individual tree transpiring 100 litres of water is equivalent to a cooling power[ clarification needed ] of 70 kWh. [2] [3] Urban heat island effects can be attributed to the replacement of vegetation by constructed surfaces. Deforested areas reveal a higher temperature than adjacent intact forest. Forests and other natural ecosystems support climate stabilisation.

The Earth’s energy budget reveals pathways to mitigate climate change using our knowledge of the efficacy of how plants cool and moderating Western approaches with proven indigenous and traditional sources of knowledge.

Transpiration and cooling

Chloroplasts in leaf cells containing chlorophyll Plagiomnium affine laminazellen.jpeg
Chloroplasts in leaf cells containing chlorophyll

Evapotranspiration is the combined processes moving water from the earth’s surface into the atmosphere. Transpiration is the movement of water through a plant and out of its leaves and other aerial parts into the atmosphere. This movement is driven by solar energy. [4] In the tallest trees, such as Sequoia sempervirens, the water rises well over 100 metres from root-tip to canopy leaves. Such trees also exploit evaporation to keep the surface cool. Water vapour from evapotranspiration mixed with air moves upwards to the point of saturation and then, helped by the emissions of cloud condensation nuclei, forms clouds. Each gram molecule (mole) of condensing water will bring about a marked 1200-fold plus reduction in volume.The simultaneous release of latent heat will drive air from below to fill the partial vacuum. The energy required for the surrounding air to move in is readily calculated from the small (one-fifteenth of latent heat) reduction in temperature.[ citation needed ]

A small amount of that water transpired is used for growth and metabolism. Photosynthesis takes place in the cells of plants and other organisms such as algae, that contain chlorophyll. This process uses the radiant energy from the sun to split water molecules into hydrogen and oxygen that when combined with the carbon sourced from carbon dioxide, produces sugars. Photosynthesis is therefore the basis of almost all food production and produces oxygen as a byproduct. [ citation needed ]

These grape leaves are translucent enabling some sunlight to pass through to shaded leaves. The shading of leaves by the balustrades and other leaves reveals the degree of translucence. Grape leaves showing translucence.jpg
These grape leaves are translucent enabling some sunlight to pass through to shaded leaves. The shading of leaves by the balustrades and other leaves reveals the degree of translucence.

Leaves have many functions. In addition to receiving water from the roots and creating the raw materials for photosynthesis, they also have a large internal surface area to enable the exchange of gases. Their stomata control the flow of water vapour out of the leaf and air into the leaf. In many plants, this is achieved in a structure thin enough to be semi-translucent, to enable some light to pass through to neighbouring leaves. The water that becomes raw material for sugar production, also cools the leaf and supports its structure through the pressure of turgidity. [5] In 2022, attempts to mass-produce artificial leaves to replicate this process and create hydrogen were still in the development stage. [6] All organic matter, living and dead, originated as sugars. Part of the process of creating those sugars was splitting the water molecule into its component parts. Vegetation has a huge influence on climate, enacted through photosynthesis and transpiration.

Botanists have calculated that there are about 600 square inches [3,871 cm2] of surface inside a leaf for every cubic inch [16.38 cm3]  of its bulk and that a large elm tree has in all some 15 million leaves within an area, if spread out whole, of nearly 10 acres [4.05 ha] or, if unfolded into the sum total of air-breathing light-absorbing surfaces of all the internal chloroplasts something like 25 square miles [64.75 square kilometres]. [5]

Plants cool when they transpire. Evaporating water and transmitting it through leaf stomata requires a lot of energy. Fred Pearce states that “a single tree transpiring a hundred litres of water a day has a cooling power equivalent to two household air-conditioning units” [7] (p. 29). An individual tree can transpire hundreds of litres of water per day. Transpiring 100 litres is equivalent to a cooling power of 70 kWh. [3] [2] Jan Pokorny posits that a tree with a crown of 5 metres diameter covers an area of about 20m2. Of the 150 kWh falling on the crown, 1% is used for photosynthesis, 10% reflected as light energy, 5 to 10% as sensible heat with the remaining 79 to 84% entering the process of transpiration. [3]

If a larger tree has a sufficient water supply, it can evaporate more than 100 L of water a day. In order to evaporate 100 L of water, approximately 70 kWh (250 MJ) of solar energy is needed. This energy is hidden in water vapor as latent heat and is released again during the process of condensation to liquid water. [3]

Extrapolated to a hectare, the cooling power of a closed canopy is 35,000 kWh a day.

Tokyo as an example of an urban heat island Heat island in Kanto region 1907-2014.svg
Tokyo as an example of an urban heat island

Cities with constructed surfaces and devegetation are typically warmer than adjacent countryside. This phenomenon is known as urban heat islands. For example Tokyo’s average September temperature has increased by almost 2 °C. over 100 years. This differential would increase in the summer months. Significant increases for cities in the tropics such as Dhaka are projected, accelerated by urban growth and intensification. [8] The city of Melbourne “plans to plant 3000 trees in Melbourne every year to increase the resilience of the urban forest and to cool our city by 4°C.” [9] Increasing tree cover and evapotranspiration provides a localised mitigation solution.

On a larger scale, The Mau Forest complex in Western Kenya was deforested from 5,200 km2 in 1986 to 3,400 km2 in 2009. Satellite images revealed temperature increases with deforested areas being 20 °C hotter or more.[ citation needed ]

There were about six trillion trees on the planet, but human activity has destroyed roughly half. [7] Increasing terrestrial biomass will cool the planet. Of the latent heat that escapes at recondensation at cloud level half departs the atmosphere into space, as the photons escape in a part of the spectrum that does not get reabsorbed by greenhouse gases.

Using satellite imagery, the impact of regeneration processes restoring vegetation in arid areas is visible from space and can tracked over time. Vegetation restoration is clearly visible in images of the Penbamoto project in Tanzania.Seeing African Restoration from Space: Planet and Justdiggit... The data associated with these images reveal a temperature reduction in the topsoil up to 0.75 °C. [10] This temperature reduction was achieved in four years. We can anticipate a larger reduction as the vegetation cover increases.

The movement of water vapour and thermal energy in the atmosphere

The movement of heat embodied in water vapour as it leaves vegetation is not well understood given the complexity of the dynamics. [11] While the movement of water into the atmosphere through evapotranspiration and consequent cooling is broadly accepted, the movement of water further into the atmosphere is more contentious. [12] There are observable phenomena that provide some clues; mornings following cloudless skies will be cooler than cloudy nights, and deserts get very hot during the day and cool rapidly at night. Heat transfer physics are complex, and involve energy carriers including photons. When energy is freed upon condensation, photons are emitted, transferring energy both upward and downward in the atmosphere. [13] Oceans add further complexity of atmospheric dynamics.[ citation needed ]

A 2022 World Resources Institute report says that albedo, surface roughness, and aerosols, along with evapotranspiration, generate clouds that increase the albedo cooling effect. They calculate that reduced emissions from tropical forest loss could achieve 2.8 gigatonnes of CO2 per year, and an additional 1.4 gigatonnes of CO2 per year of additional cooling through these albedo effects. [14]

Using thermal imaging to illustrate transpirational cooling

Thermal image and a visual image of Coronation Reserve reveal the temperature differential Thermal image and visual image of Coronation Reserve.png
Thermal image and a visual image of Coronation Reserve reveal the temperature differential

Thermal imaging captures the infrared radiation emitted from an object. Michal Kravčík, Jan Pokorný and co-authors used thermographs to demonstrate the temperature differential between vegetation and constructed surfaces in their 2007 Water for the recovery of the climate - a new water paradigm. [15]

The images to the right were taken with a thermal lens mounted on a mobile phone alongside visual images for reference points. A 20 °C. plus temperature differential between vegetation and was often recorded. [16] The three images here pair thermal images and visual images. They reveal significant temperature differences between vegetated and bare surfaces. The image of the Coronation Reserve shows an areas of turf and the margin of native forest separated by a herbicide strip. The bottom image is a thermal image with a slightly different perspective, mainly caused by different camera lenses. The key information distilled from these images is the temperature differences. The grass and the forest margin have similar heat signatures. Temperatures range from 29 to 37 °C. while the dividing herbicide strip reaches 53 °C. Note also the vehicle tracks in the top image with roughly proximate higher temperature readings in the bottom image with an 8 °C. differential. Over time vehicles compact soil structure leading to reduced plant growth, especially when vehicles drive on wet soils. This image reveals that turf can be as cooling as forest.[ citation needed ]

The temperature of Coprosma repens 'Poor Knights" groundcover on a road meridian contrasted with much hotter mulch. Thermal and visual image showing 29 degree C. temperature differential.png
The temperature of Coprosma repens 'Poor Knights" groundcover on a road meridian contrasted with much hotter mulch.

A second side-by-side comparison of thermal and visual images are of a traffic meridian. The ground cover plants are Coprosma repens 'Poor Knights'. The mulch, at its hottest, is 61 °C. The coprosma are as cool as 32 °C. - a 29 °C temperature difference.[ citation needed ]

Significance for climate mitigation

Non-vegetated or constructed surfaces absorb incoming solar radiation striking[ clarification needed ] that energy and re-radiating it as infrared heat with long waveforms. This is sensible heat in that it can be sensed. Temperature is changed without a change of state. By contrast latent heat (hidden heat) results from a change of state without a change of temperature. For example as radiant energy warms a body of water it raises the temperature generating sensible heat. Water evaporated from the body of water changes state as latent heat. [17] To change one gram of liquid water to vapour requires 540 calories of heat, and if that water vapour condenses back to liquid water 540 calories are released. [17] One climate mitigation pathway is for water vapour to carry energy back into the atmosphere where some of that energy will dissipate into space.

Earth's energy budget (NASA) The-NASA-Earth's-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg
Earth's energy budget (NASA)

Earth’s energy budget reveals the pathways of solar energy to earth, its cycling in earth systems and atmosphere, and release back into space. There is an average of 340.4 watts/m2 of incoming energy. To maintain a stable climate the same amount of energy must return to space. While increased levels of greenhouse gasses retain more heat, there are other pathways that can influence this energy balance. Understanding these dynamics provides more pathways to moderate the climate than simply relying on emissions reductions and sequestration alone. Referencing the NASA earth’s energy budget, an example is reducing the 398.2 watts/m2 emitted by the surface, by extending terrestrial and marine vegetative cover as a percentage of land cover and by extending the length of seasonal growth. This is achieved through a whole system approach including regenerating the soil carbon sponge, protection of existing forests, reafforestation, and restoring the biotic pump. The heat emitted from the planet (398.2 watts/m2) is greater than incoming solar energy (340.4 watts/m2).[ citation needed ]

Thermal image of spinifex showing a 27 degree C. temperature difference Thermal image of spinifex showing a 27o Celcius temperature difference.png
Thermal image of spinifex showing a 27 degree C. temperature difference

[18]

Indigenous stewardship for climate moderation

Increasing vegetative cover will be enhanced by protecting indigenous rights. Deforestation is an expression of the extractive industries of colonisation. Recent scholarship has identified that indigenous communities in Australia [19] [ clarification needed ] [20] and North America [21] maintained landscapes to reduce the incidence of uncontrolled forest fire and maintain biodiversity. A study of 12,000 years of population data found that “three quarters of terrestrial nature has long been shaped by diverse histories of human habitation and use by Indigenous and traditional peoples”. [22]  

With rare exceptions, current biodiversity losses are caused not by human conversion or degradation of untouched ecosystems, but rather by the appropriation, colonization, and intensification of use in lands inhabited and used by prior societies. [22]

This calls on us to unlearn some of the assumptions embedded in Western epistemologies and the decolonisation of knowledge as a foundation for more effective climate action. [23] [24]

See also

Related Research Articles

<span class="mw-page-title-main">Evaporation</span> Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Humidity</span> Concentration of water vapour in the air

Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present.

<span class="mw-page-title-main">Evapotranspiration</span> Natural processes of water movement within the water cycle

Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in agricultural irrigation and water resource management.

<span class="mw-page-title-main">Water vapor</span> Gaseous phase of water

Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than most of the other constituents of air and triggers convection currents that can lead to clouds and fog.

<span class="mw-page-title-main">Latent heat</span> Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Water cycle</span> Continuous movement of water on, above and below the surface of the Earth

The water cycle, is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time. However, the partitioning of the water into the major reservoirs of ice, fresh water, salt water and atmospheric water is variable and depends on climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere. The processes that drive these movements are evaporation, transpiration, condensation, precipitation, sublimation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor. The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation.

<span class="mw-page-title-main">Potential evapotranspiration</span>

Potential evapotranspiration (PET) or potential evaporation (PE) is the amount of water that would be evaporated and transpired by a specific crop, soil or ecosystem if there was sufficient water available. It is a reflection of the energy available to evaporate or transpire water, and of the wind available to transport the water vapor from the ground up into the lower atmosphere and away from the initial location. Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage.

<span class="mw-page-title-main">Evaporative cooler</span> Device that cools air through the evaporation of water

An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

<span class="mw-page-title-main">Solar still</span> Water distillation and purification system using solar energy

A solar still distills water with substances dissolved in it by using the heat of the Sun to evaporate water so that it may be cooled and collected, thereby purifying it. They are used in areas where drinking water is unavailable, so that clean water is obtained from dirty water or from plants by exposing them to sunlight.

<span class="mw-page-title-main">Soil-plant-atmosphere continuum</span>

The soil-plant-atmosphere continuum (SPAC) is the pathway for water moving from soil through plants to the atmosphere. Continuum in the description highlights the continuous nature of water connection through the pathway. The low water potential of the atmosphere, and relatively higher water potential inside leaves, leads to a diffusion gradient across the stomatal pores of leaves, drawing water out of the leaves as vapour. As water vapour transpires out of the leaf, further water molecules evaporate off the surface of mesophyll cells to replace the lost molecules since water in the air inside leaves is maintained at saturation vapour pressure. Water lost at the surface of cells is replaced by water from the xylem, which due to the cohesion-tension properties of water in the xylem of plants pulls additional water molecules through the xylem from the roots toward the leaf.

<span class="mw-page-title-main">Climate system</span> Interactions that create Earths climate and may result in climate change

Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere, the lithosphere and the biosphere. Climate is the statistical characterization of the climate system. It represents the average weather, typically over a period of 30 years, and is determined by a combination of processes, such as ocean currents and wind patterns. Circulation in the atmosphere and oceans transports heat from the tropical regions to regions that receive less energy from the Sun. Solar radiation is the main driving force for this circulation. The water cycle also moves energy throughout the climate system. In addition, certain chemical elements are constantly moving between the components of the climate system. Two examples for these biochemical cycles are the carbon and nitrogen cycles.

IBIS-2 is the version 2 of the land-surface model Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS was designed to explicitly link land surface and hydrological processes, terrestrial biogeochemical cycles, and vegetation dynamics within a single physically consistent framework

<span class="mw-page-title-main">Holdridge life zones</span> Global bioclimatic scheme for the classification of land areas

The Holdridge life zones system is a global bioclimatic scheme for the classification of land areas. It was first published by Leslie Holdridge in 1947, and updated in 1967. It is a relatively simple system based on few empirical data, giving objective criteria. A basic assumption of the system is that both soil and the climax vegetation can be mapped once the climate is known.

The Penman–Monteith equation approximates net evapotranspiration (ET) from meteorological data, as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations Food and Agriculture Organization for modeling reference evapotranspiration ET0.

A xerophyte is a species of plant that has adaptations to survive in an environment with little liquid water. Examples of xerophytes include cacti, pineapple and some gymnosperm plants. The morphology and physiology of xerophytes are adapted to conserve water during dry periods. Some species called resurrection plants can survive long periods of extreme dryness or desiccation of their tissues, during which their metabolic activity may effectively shut down. Plants with such morphological and physiological adaptations are said to be xeromorphic. Xerophytes such as cacti are capable of withstanding extended periods of dry conditions as they have deep-spreading roots and capacity to store water. Their waxy, thorny leaves prevent loss of moisture.

<span class="mw-page-title-main">Transpiration</span> Process of water moving through a plant parts

Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. It is a passive process that requires no energy expense by the plant. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients. When water uptake by the roots is less than the water lost to the atmosphere by evaporation plants close small pores called stomata to decrease water loss, which slows down nutrient uptake and decreases CO2 absorption from the atmosphere limiting metabolic processes, photosynthesis, and growth.

<span class="mw-page-title-main">Biotic pump</span> Theory of how forests affect rainfall

The biotic pump is a theoretical concept that shows how forests create and control winds coming up from the ocean and in doing so bring water to the forests further inland.

BAITSSS is biophysical Evapotranspiration (ET) computer model that determines water use, primarily in agriculture landscape, using remote sensing-based information. It was developed and refined by Ramesh Dhungel and the water resources group at University of Idaho's Kimberly Research and Extension Center since 2010. It has been used in different areas in the United States including Southern Idaho, Northern California, northwest Kansas, Texas, and Arizona.

References

  1. Forbes, James C.; Watson, Drennan (1992-08-20). Plants in Agriculture. Cambridge University Press. ISBN   978-0-521-42791-3.
  2. 1 2 Ellison, David; Morris, Cindy E.; Locatelli, Bruno; Sheil, Douglas; Cohen, Jane; Murdiyarso, Daniel; Gutierrez, Victoria; Noordwijk, Meine van; Creed, Irena F.; Pokorny, Jan; Gaveau, David; Spracklen, Dominick V.; Tobella, Aida Bargués; Ilstedt, Ulrik; Teuling, Adriaan J. (2017-03-01). "Trees, forests and water: Cool insights for a hot world". Global Environmental Change. 43: 51–61. doi: 10.1016/j.gloenvcha.2017.01.002 . ISSN   0959-3780.
  3. 1 2 3 4 Pokorny, Jan (2019-01-01), "Evapotranspiration☆", in Fath, Brian (ed.), Encyclopedia of Ecology (Second Edition), Oxford: Elsevier, pp. 292–303, ISBN   978-0-444-64130-4 , retrieved 2022-11-21
  4. Tributsch, Helmut; Cermak, Jan; Nadezhdina, Nadezhda (2005-09-22). "Kinetic studies on the tensile state of water in trees". The Journal of Physical Chemistry B. 109 (37): 17693–17707. doi:10.1021/jp051242u. ISSN   1520-6106. PMID   16853265.
  5. 1 2 Murchie, Guy (1978). The seven mysteries of life : an exploration in science & philosophy. Boston. p. 49. ISBN   0-395-26310-7. OCLC   3730638.{{cite book}}: CS1 maint: location missing publisher (link)
  6. Casey, Tina (2022-11-12). ""Artificial Leaf" To Produce Green Hydrogen". CleanTechnica. Retrieved 2022-11-20.
  7. 1 2 Pearce, Fred (2021). A trillion trees : how we can reforest our world. London. p. 29. ISBN   978-1-78378-691-6. OCLC   1232226703.{{cite book}}: CS1 maint: location missing publisher (link)
  8. Faisal, Abdullah-Al-; Kafy, Abdulla - Al; Al Rakib, Abdullah; Akter, Kaniz Shaleha; Jahir, Dewan Md. Amir; Sikdar, Md. Soumik; Ashrafi, Tahera Jahan; Mallik, Saumik; Rahman, Md. Mijanur (2021-08-01). "Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area". Environmental Challenges. 4: 100192. Bibcode:2021EnvCh...400192F. doi: 10.1016/j.envc.2021.100192 . ISSN   2667-0100. S2CID   237711617.
  9. "Cooling our city - City of Melbourne". www.melbourne.vic.gov.au. Retrieved 2022-11-20.
  10. "Seeing African Restoration from Space: Planet and Justdiggit..." Retrieved 2022-12-03.
  11. Harde, Hermann (2013-10-27). "Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis". International Journal of Atmospheric Sciences. 2013: e503727. doi: 10.1155/2013/503727 . ISSN   2314-4122.
  12. Makarieva, Anastassia M.; Nefiodov, Andrei V.; Nobre, Antonio Donato; Sheil, Douglas; Nobre, Paulo; Pokorný, Jan; Hesslerová, Petra; Li, Bai-Lian (2022-10-01). "Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts". Heliyon. 8 (10): e11173. arXiv: 2112.12880 . Bibcode:2022Heliy...811173M. doi: 10.1016/j.heliyon.2022.e11173 . ISSN   2405-8440. PMC   9618993 . PMID   36325135.
  13. Makarieva, Anastassia; Gorshov, Victor (February 2001). "The greenhouse effect and the stability of the global mean surface temperature". Doklady Earth Sciences. 377 (6): 210–214 via Springer.
  14. Seymour, Frances; Wolosin, Michael; Gray, Erin (24 October 2022). Not Just Carbon: Capturing All the Benefits of Forests for Stabilizing the Climate from Local to Global Scales (Report).
  15. Kravčík, Michal (2008). Water for the recovery of the climate : a new water paradigm. Kovice, Slovakia: TypoPress. ISBN   978-80-89089-71-0. OCLC   701836009.
  16. Bruce-Iri, Peter (2022). How plants cool and heal the climate : finding solutions close to home. Whangārei, New Zealand. ISBN   978-0-473-63353-0. OCLC   1349731259.{{cite book}}: CS1 maint: location missing publisher (link)
  17. 1 2 GEOG 141 SU17 (Video 09) Latent and Sensible Heat , retrieved 2022-11-20
  18. "Radiation windows". Climate Action Tai Tokerau. 2020-03-28. Retrieved 2022-11-20.
  19. Pascoe, Bruce (2018). Dark Emu : Aboriginal Australia and the birth of agriculture (New ed.). Broome, Western Australia. ISBN   978-1-921248-01-6. OCLC   1038067363.{{cite book}}: CS1 maint: location missing publisher (link)
  20. "Indigenous Forest Management in Australia". Margules Groome. Retrieved 2022-11-20.
  21. "'Forest gardens' show how Native land stewardship can outdo nature". Environment. 2021-04-23. Archived from the original on April 23, 2021. Retrieved 2022-11-20.
  22. 1 2 Ellis, Erle C.; Gauthier, Nicolas; Klein Goldewijk, Kees; Bliege Bird, Rebecca; Boivin, Nicole; Díaz, Sandra; Fuller, Dorian Q.; Gill, Jacquelyn L.; Kaplan, Jed O.; Kingston, Naomi; Locke, Harvey; McMichael, Crystal N. H.; Ranco, Darren; Rick, Torben C.; Shaw, M. Rebecca (2021-04-27). "People have shaped most of terrestrial nature for at least 12,000 years". Proceedings of the National Academy of Sciences. 118 (17): e2023483118. Bibcode:2021PNAS..11823483E. doi: 10.1073/pnas.2023483118 . ISSN   0027-8424. PMC   8092386 . PMID   33875599.
  23. Boisselle, Laila N. (2016-01-01). "Decolonizing Science and Science Education in a Postcolonial Space (Trinidad, a Developing Caribbean Nation, Illustrates)". SAGE Open. 6 (1): 215824401663525. doi: 10.1177/2158244016635257 . ISSN   2158-2440. S2CID   147061803.
  24. "Climate Change, Decolonization, and Global Blackness | John Hope Franklin Humanities Institute". fhi.duke.edu. Retrieved 2022-11-20.