Tree uprooting

Last updated
A fallen tree with exposed root plate Abattage culee noire sapin Molieres 13.jpg
A fallen tree with exposed root plate

Uprooting is a form of treefall in which the root plate of a tree is torn from the soil, disrupting and mixing it and leaving a pit-mound. [1] [2]

Contents

Purposes

Transplanting

Small trees can be replanted if their root system is well attached to the trunk. [3] Trees can suffer from transplant shock when moved to new environment, and that causes the tree not to be able to root itself properly. [3]

Ecosystem maintenance

Uprooting can be an effective method for efforts to remove unwanted woody species from an ecosystem, e.g., in the context of woody plant encroachment. [4]

Related Research Articles

<span class="mw-page-title-main">Soil</span> Mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.

<span class="mw-page-title-main">Root</span> Basal organ of a vascular plant

In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Mangrove</span> Shrub growing in brackish water

A mangrove is a shrub or tree that grows mainly in coastal saline or brackish water. Mangroves grow in an equatorial climate, typically along coastlines and tidal rivers. They have special adaptations to take in extra oxygen and to remove salt, which allow them to tolerate conditions that would kill most plants. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in several plant families. They occur worldwide in the tropics and subtropics and even some temperate coastal areas, mainly between latitudes 30° N and 30° S, with the greatest mangrove area within 5° of the equator. Mangrove plant families first appeared during the Late Cretaceous to Paleocene epochs, and became widely distributed in part due to the movement of tectonic plates. The oldest known fossils of mangrove palm date to 75 million years ago.

<span class="mw-page-title-main">Chernozem</span> Soil type; very fertile, black-coloured soil containing a high percentage of humus

Chernozem, also called black soil, regur soil or black cotton soil, is a black-colored soil containing a high percentage of humus and high percentages of phosphorus and ammonia compounds. Chernozem is very fertile soil and can produce high agricultural yields with its high moisture-storage capacity. Chernozems are a Reference Soil Group of the World Reference Base for Soil Resources (WRB)

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

<span class="mw-page-title-main">Podzol</span> Typical soils of coniferous or boreal forests

In soil science, podzols are the typical soils of coniferous or boreal forests and also the typical soils of eucalypt forests and heathlands in southern Australia. In Western Europe, podzols develop on heathland, which is often a construct of human interference through grazing and burning. In some British moorlands with podzolic soils, cambisols are preserved under Bronze Age barrows.

<span class="mw-page-title-main">Agroforestry</span> Land use management system

Agroforestry is a land use management system that integrates trees with crops or pasture. It combines agricultural and forestry technologies. As a polyculture system, an agroforestry system can produce timber and wood products, fruits, nuts, other edible plant products, edible mushrooms, medicinal plants, ornamental plants, animals and animal products, and other products from both domesticated and wild species.

<i>Stigmaria</i> Fossilized root structure of extinct tree-like plants

Stigmaria is a form taxon for common fossils found in Carboniferous rocks. They represent the underground rooting structures of arborescent lycophytes such as Sigillaria and Lepidodendron under the order Lepidodendrales.

<span class="mw-page-title-main">Soil carbon</span> Solid carbon stored in global soils

Soil carbon is the solid carbon stored in global soils. This includes both soil organic matter and inorganic carbon as carbonate minerals. It is vital to the soil capacity in our ecosystem. Soil carbon is a carbon sink in regard to the global carbon cycle, playing a role in biogeochemistry, climate change mitigation, and constructing global climate models. Natural variation such as organisms and time has affected the management of carbon in the soils. The major influence has been that of human activities which has caused a massive loss of soil organic carbon. An example of human activity includes fire which destroys the top layer of the soil and the soil therefore get exposed to excessive oxidation.

Soil biodiversity refers to the relationship of soil to biodiversity and to aspects of the soil that can be managed in relative to biodiversity. Soil biodiversity relates to some catchment management considerations.

Hydraulic redistribution is a passive mechanism where water is transported from moist to dry soils via subterranean networks. It occurs in vascular plants that commonly have roots in both wet and dry soils, especially plants with both taproots that grow vertically down to the water table, and lateral roots that sit close to the surface. In the late 1980s, there was a movement to understand the full extent of these subterranean networks. Since then it was found that vascular plants are assisted by fungal networks which grow on the root system to promote water redistribution.

<span class="mw-page-title-main">Environmental effects of mining</span> Environmental problems from uncontrolled mining

Environmental effects of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change. Some mining methods may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state. Mining can provide various advantages to societies, yet it can also spark conflicts, particularly regarding land use both above and below the surface.

The soil biomantle can be described and defined in several ways. Most simply, the soil biomantle is the organic-rich bioturbated upper part of the soil, including the topsoil where most biota live, reproduce, die, and become assimilated. The biomantle is thus the upper zone of soil that is predominantly a product of organic activity and the area where bioturbation is a dominant process.

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

Pit and mounds are small, persistent microtopographical features that present themselves after a disturbance event occurs and uproots trees via windthrow. The uprooted tree falls, and a pit forms in the forest floor where the root mass and associated soil matrix used to be. Eventually after a period of time in which the roots decay, the associated soil matrix that was pulled out of the ground with the roots falls back to the ground, creating a corresponding mound.

Rainer Schulin is a German zoologist, forest scientist and emeritus professor of soil protection at the ETH Zurich.

<span class="mw-page-title-main">Woody plant encroachment</span> Vegetation cover change

Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It predominantly occurs in grasslands, savannas and woodlands and can cause biome shifts from open grasslands and savannas to closed woodlands. The term bush encroachment refers to the expansion of native plants and not the spread of alien invasive species. It is thus defined by plant density, not species. Bush encroachment is often considered an ecological regime shift and can be a symptom of land degradation. The phenomenon is observed across different ecosystems and with different characteristics and intensities globally.

Soil sealing or soil surface sealing is the loss of soil resources due to the covering of land for housing, roads or other construction work. Covering or replacing the topsoil with impervious materials like asphalt and cement as a result of urban development and infrastructure construction paired with compaction of the underlying soil layers results in the mostly irreversible loss of relevant soil ecosystem services.The global rise in population has heightened the need for soil sealing, which in turn leads to the degradation of land. Sealed land is a serious form of land take .Soil sealing and land take together leads to the complete loss of soil functions, including its biological, physical and chemical properties.

References

  1. Šamonil, Pavel; Král, Kamil; Hort, Libor (2010). "The role of tree uprooting in soil formation: A critical literature review". Geoderma. 157 (3–4). Elsevier BV: 65–79. Bibcode:2010Geode.157...65S. doi:10.1016/j.geoderma.2010.03.018. ISSN   0016-7061.
  2. Schaetzl, Randall J.; Burns, Scott F.; Johnson, Donald L.; Small, Thomas W. (1988). "Tree uprooting: review of impacts on forest ecology". Vegetatio. 79 (3). Springer Science and Business Media LLC: 165–176. doi:10.1007/bf00044908. ISSN   0042-3106.
  3. 1 2 Gerard, Jack (14 December 2018). "Can an Uprooted Tree Be Replanted?". SFGATE.com. Hearst Communications, Inc. Retrieved 2 August 2021.
  4. Castillo-Garcia, Miguel; Alados, Concepción L.; Ramos, Javier; Pueyo, Yolanda (2024-01-01). "Effectiveness of two mechanical shrub removal treatments for restoring sub-alpine grasslands colonized by re-sprouting woody vegetation". Journal of Environmental Management. 349: 119450. Bibcode:2024JEnvM.34919450C. doi: 10.1016/j.jenvman.2023.119450 . ISSN   0301-4797. PMID   37897902.