Tripropylene

Last updated
Tripropylene
PropyleneTrimer.png
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UN number 2057
  • 4,6-Dimethyl-1-heptene::InChI=1S/C9H18/c1-5-6-9(4)7-8(2)3/h5,8-9H,1,6-7H2,2-4H3
    Key: FSWNZCWHTXTQBY-UHFFFAOYSA-N
  • 4,6-Dimethyl-1-heptene::CC(C)CC(C)CC=C
Properties
C9H18
Molar mass 126.24 g/mol
Appearancecolourless liquid
Density 1.022 g/mL
Melting point −93.5 °C (−136.3 °F; 179.7 K)
Boiling point 156 °C (313 °F; 429 K)
very low
Hazards
Flash point 23 [1]  °C (73 °F; 296 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tripropylene, also known as propylene trimer, is usually sold as a mixture of structural isomers of nonene. [2] This mixture is obtained by oligomerization of propene:

3 C3H6 → C9H18

In this process, two double bonds are lost and one is retained as illustrated by the isomer shown in the figure. The reaction is catalyzed by acids, such as polyphosphoric acid. [3] A variety of catalysts have been explored. [4] The reaction proceeds via the formation of a carbocation ((CH3)2CH+), which attacks another propylene unit, generating a new carbocation, etc. This kind of process affords mixtures (C3H6)n.

Like other alkenes, propylene trimer is used as an alkylating agent. A number of surfactants and lubricants are produced by alkylation of aromatic substrates.

See also

Related Research Articles

In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases.

In chemistry, a racemic mixture or racemate, is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates.

In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.

<span class="mw-page-title-main">Cumene process</span> Industrial process

The cumene process is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene, the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), and independently by Heinrich Hock in 1944.

<span class="mw-page-title-main">Propylene oxide</span> Chemical compound

Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula C3H6O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

An isocyanide is an organic compound with the functional group –N+≡C. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.

Tetrazoles are a class of synthetic organic heterocyclic compound, consisting of a 5-member ring of four nitrogen atoms and one carbon atom. The name tetrazole also refers to the parent compound with formula CH2N4, of which three isomers can be formulated.

<span class="mw-page-title-main">Atropisomer</span> Stereoisomerism due to hindered rotation

Atropisomers are stereoisomers arising because of hindered rotation about a single bond, where energy differences due to steric strain or other contributors create a barrier to rotation that is high enough to allow for isolation of individual conformers. They occur naturally and are important in pharmaceutical design. When the substituents are achiral, these conformers are enantiomers (atropoenantiomers), showing axial chirality; otherwise they are diastereomers (atropodiastereomers).

<span class="mw-page-title-main">Pinacol rearrangement</span> Rearrangement of compound by charge rearrangement.

The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone.

<span class="mw-page-title-main">Prins reaction</span> Chemical reaction involving organic compounds

The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile or elimination of an H+ ion. The outcome of the reaction depends on reaction conditions. With water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1,3-diol (3). When water is absent, the cationic intermediate loses a proton to give an allylic alcohol (4). With an excess of formaldehyde and a low reaction temperature the reaction product is a dioxane (5). When water is replaced by acetic acid the corresponding esters are formed.

Nonene is an alkene with the molecular formula C9H18. Many structural isomers are possible, depending on the location of the C=C double bond and the branching of the other parts of the molecule. Industrially, the most important nonenes are trimers of propene: Tripropylene. This mixture of branched nonenes is used in the alkylation of phenol to produce nonylphenol, a precursor to detergents, which are also controversial pollutants.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

In organic chemistry, two molecules are valence isomers when they are constitutional isomers that can interconvert through pericyclic reactions.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry.

<span class="mw-page-title-main">Allyl acetate</span> Chemical compound

Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.

Carbonyl olefin metathesis is a type of metathesis reaction that entails, formally, the redistribution of fragments of an alkene and a carbonyl by the scission and regeneration of carbon-carbon and carbon-oxygen double bonds respectively. It is a powerful method in organic synthesis using simple carbonyls and olefins and converting them into less accessible products with higher structural complexity.

References

  1. https://www.exxonmobilchemical.com/dfsmedia/f743208d804841f6ab89a60202cc3f56/3035-source?extension=pdf/options/download ExxonMobil Chemical Product Safety Summary], exxonmobilchemical.com
  2. Tripropylene MSDS, chemexper.net
  3. G. R. Lappin, L. H. Nemec, J. D. Sauer, J. D. Wagner "Olefins, Higher" in Kirk-Othmer Encyclopedia of Chemical Technology, 2010. doi : 10.1002/0471238961.1512050612011616.a01.pub2
  4. Johan A. Martens, Wim H. Verrelst, Georges M. Mathys, Stephen H. Brown, Pierre A. Jacobs "Tailored Catalytic Propene Trimerization over Acidic Zeolites with Tubular Pores" Angewandte Chemie International Edition Angewandte Chemie International Edition 2005, Volume 44, Issue 35, pages 5687–5690. doi : 10.1002/anie.200463045