Tubularia

Last updated

Contents

Tubularia
Tubularia indivisa, hydranth of male colony (from Allman, 1872).png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Hydrozoa
Order: Anthoathecata
Family: Tubulariidae
Genus: Tubularia
Linnaeus, 1758
Species

Tubularia is a genus of hydroids resembling furry pink tufts or balls at the end of long strings, spawning the common name as either the pink-mouthed or pink-hearted hydroid.

Description

Tubularia-indivisa.jpg The average height of an individual colony is 4–6 centimetres (1+122+12 inches) and the diameter of the polyp and tentacles is 1 cm (12 in).

Tubularia occurs either individually or in colonies, both being dioecious and possessing large, brilliantly coloured, flowerlike hydrants. Medusae remain attached to the hypostome in clusters, never being dispersed.[ citation needed ]

Life cycle

During the summer, sperm are released into the water and attracted to female reproductive structures by means of a chemical substance. Internal fertilization occurs in the female medusoids. The fertilized eggs develop into actinula. [1] These larvae develop directly into a new polyp. Although the medusa are attached to the polyp, the life cycle resembles that of typical Cnidarian with the polyp reproducing asexually and the medusa producing egg and sperm. [2]

Similar taxa

Tubularia indivisa may be difficult to distinguish from Ectopleura larynx , with the two often growing together. The stems of E. larynx are branched while those of T. indivisa are not. [3]

Related Research Articles

<span class="mw-page-title-main">Polyp (zoology)</span> One of two forms found in the phylum Cnidaria (zoology)

A polyp in zoology is one of two forms found in the phylum Cnidaria, the other being the medusa. Polyps are roughly cylindrical in shape and elongated at the axis of the vase-shaped body. In solitary polyps, the aboral end is attached to the substrate by means of a disc-like holdfast called a pedal disc, while in colonies of polyps it is connected to other polyps, either directly or indirectly. The oral end contains the mouth, and is surrounded by a circlet of tentacles.

<span class="mw-page-title-main">Scyphozoa</span> Class of marine cnidarians, true jellyfish

The Scyphozoa are an exclusively marine class of the phylum Cnidaria, referred to as the true jellyfish.

<span class="mw-page-title-main">Hydrozoa</span> Class of cnidarians

Hydrozoa is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

<i>Obelia</i> Genus of hydrozoans

Obelia is a genus of hydrozoans, a class of mainly marine and some freshwater animal species that have both polyp and medusa stages in their life cycle. Hydrozoa belongs to the phylum Cnidaria, which are aquatic organisms that are relatively simple in structure with a diameter around 1mm. There are currently 120 known species, with more to be discovered. These species are grouped into three broad categories: O. bidentata, O. dichotoma, and O. geniculata. O. longissima was later accepted as a legitimate species, but taxonomy regarding the entire genus is debated over.

A planula is the free-swimming, flattened, ciliated, bilaterally symmetric larval form of various cnidarian species and also in some species of Ctenophores, which are not related to cnidarians at all. Some groups of Nemerteans also produce larvae that are very similar to the planula, which are called planuliform larva. In a few cnidarian clades, like Aplanulata and the parasitic Myxozoa, the planula larval stage has been lost.

<span class="mw-page-title-main">Stauromedusae</span> Order of jellyfishes

Stauromedusae are the stalked jellyfishes. They are the sole living members of the class Staurozoa and belong to the medusozoa subphylum of Cnidaria. They are unique among medusa jellyfish in that they do not have an alternation of polyp and medusa life cycle phases, but are instead interpreted as an attached medusa stage, with a lifestyle more resembling that of polypoid forms. They have a generally trumpet-shaped body, oriented upside-down in comparison with other jellyfish, with the tentacles projecting upwards, and the stalk located in the centre of the umbrella. Stauromedusae usually has eight marginal arms at the top of the calyx. They reach their adult sizes within several weeks, typically 1 to 4 centimeters in length.

<i>Phyllorhiza punctata</i> Species of jellyfish

Phyllorhiza punctata is a species of jellyfish, also known as the floating bell, Australian spotted jellyfish, brown jellyfish or the white-spotted jellyfish. It is native to the western Pacific from Australia to Japan, but has been introduced widely elsewhere. It feeds primarily on zooplankton. P. punctata generally can reach up to 50 centimetres (20 in) in bell diameter, but in October 2007, one 74 cm (29 in) wide, perhaps the largest ever recorded, was found on Sunset Beach, North Carolina.

<i>Turritopsis dohrnii</i> Species of small, biologically immortal jellyfish

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.

<i>Chrysaora hysoscella</i> Species of jellyfish

Chrysaora hysoscella, the compass jellyfish, is a common species of jellyfish that inhabits coastal waters in temperate regions of the northeastern Atlantic Ocean, including the North Sea and Mediterranean Sea. In the past it was also recorded in the southeastern Atlantic, including South Africa, but this was caused by confusion with close relatives; C. africana, C. fulgida and an undescribed species tentatively referred to as "C. agulhensis".

<i>Chrysaora fuscescens</i> Species of cnidarian

The Pacific sea nettle, or West Coast sea nettle, is a widespread planktonic scyphozoan cnidarian—or medusa, “jellyfish” or “jelly”—that lives in the northeastern Pacific Ocean, in temperate to cooler waters off of British Columbia and the West Coast of the United States, ranging south to México. The Pacific sea nettle earned its common name in-reference to its defensive, ‘nettle’-like sting; much like the stinging nettle plant, the sea nettle’s defensive sting is often irritating to humans, though rarely dangerous.

<span class="mw-page-title-main">Sea anemone</span> Marine animals of the order Actiniaria

Sea anemones are a group of predatory marine invertebrates constituting the order Actiniaria. Because of their colourful appearance, they are named after the Anemone, a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Unlike jellyfish, sea anemones do not have a medusa stage in their life cycle.

<span class="mw-page-title-main">Spawn (biology)</span> Process of aquatic animals releasing sperm and eggs into water

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of freely releasing eggs and sperm into a body of water ; the physical act is known as spawning. The vast majority of non-mammalian, non-avian and non-reptilian aquatic and/or amphibious lifeforms reproduce through this process, including the:

<i>Tubularia indivisa</i> Species of hydrozoan

Tubularia indivisa is a species of large hydroid discovered in 1758.

<i>Obelia longissima</i> Species of hydrozoan

Obelia longissima is a colonial species of hydrozoan in the order Leptomedusae. Its hydroid form grows as feathery stems resembling seaweed from a basal stolon. It is found in many temperate and cold seas world-wide but is absent from the tropics.

<i>Catriona aurantia</i> Species of gastropod

Catriona aurantia is a species of sea slug, an aeolid nudibranch, a marine gastropod mollusk in the family Trinchesiidae. It was incorrectly synonymised with Catriona gymnota from the Western Atlantic but shown to be a distinct species by DNA analysis.

<i>Pennaria disticha</i> Species of hydrozoan

Pennaria disticha, also known as the Christmas tree hydroid, is a species of athecate hydroid in the family Pennariidae. Colonies are common in the Mediterranean Sea growing on rocks close to the surface. This species has been used in research into prey capture.

<i>Ectopleura larynx</i> Species of hydrozoan

Ectopleura larynx, or ringed tubularia, is a hydroid in the family Tubulariidae.

<i>Chrysaora plocamia</i> Species of jellyfish

The South American sea nettle is a species of jellyfish from the family Pelagiidae. It is found from the Pacific coast of Peru, south along Chile's coast to Tierra del Fuego, and north along the Atlantic coast of Argentina, with a few records from Uruguay. Despite its common name, it is not the only sea nettle in South America. For example, C. lactea is another type of sea nettle in this region. Historically, C. plocamia was often confused with C. hysoscella, a species now known to be restricted to the northeast Atlantic. C. plocamia is a large jellyfish, up to 1 m in bell diameter, although most mature individuals only are 25–40 cm (10–16 in).

<i>Obelia dichotoma</i> Species of hydrozoan

Obelia dichotoma is a broadly distributed, mainly marine but sometimes freshwater, colonial hydrozoan in the order Leptothecata that forms regular branching stems and a distinctive hydrotheca. O. dichotoma can be found in climates from the arctic to the tropics in protected waters such as marches and creeks but not near open coasts like beaches in depths up to 250m. O. dichotoma uses asexual and sexual reproduction and feeds on mainly zooplankton and fecal pellets. Obelia dichotoma has a complex relationship with the ecosystem and many economic systems.

References

  1. Somodevilla, Alina. "Ectopleura Larynx." Anima Diversity Web. University of Michigan Museum of Zoology.
  2. Fish, J. D., and S. Fish. A Student's Guide to the Seashore. New York: Cambridge UP, 2011. Print
  3. Characteristics." Ringed Tubularia - Ectopleura Larynx. 29 May 2015. Web.