Two capacitor paradox

Last updated
Circuit of the paradox, showing initial voltages before the switch is closed Two capacitor paradox.svg
Circuit of the paradox, showing initial voltages before the switch is closed

The two capacitor paradox or capacitor paradox is a paradox, or counterintuitive thought experiment, in electric circuit theory. [1] [2] The thought experiment is usually described as follows: Two identical capacitors are connected in parallel with an open switch between them. One of the capacitors is charged with a voltage of , the other is uncharged. When the switch is closed, some of the charge on the first capacitor flows into the second, reducing the voltage on the first and increasing the voltage on the second. When a steady state is reached and the current goes to zero, the voltage on the two capacitors must be equal since they are connected together. Since they both have the same capacitance the charge will be divided equally between the capacitors so each capacitor will have a charge of and a voltage of . At the beginning of the experiment the total initial energy in the circuit is the energy stored in the charged capacitor:

Contents

At the end of the experiment the final energy is equal to the sum of the energy in the two capacitors

Thus the final energy is equal to half of the initial energy . Where did the other half of the initial energy go?

Solutions

This problem has been discussed in electronics literature at least as far back as 1955. [3] [1] [4] Unlike some other paradoxes in science, this paradox is not due to the underlying physics, but to the limitations of the 'ideal circuit' conventions used in circuit theory. [5] The description specified above is not physically realizable if the circuit is assumed to be made of ideal circuit elements, as is usual in circuit theory. If the wires connecting the two capacitors, the switch, and the capacitors themselves are idealized as having no electrical resistance or inductance as is usual, then closing the switch would connect points at different voltage with a perfect conductor, causing an infinite current to flow. Therefore a solution requires that one or more of the 'ideal' characteristics of the elements in the circuit be relaxed, which was not specified in the above description. The solution differs depending on which of the assumptions about the actual characteristics of the circuit elements is abandoned:

Various additional solutions have been devised, based on more detailed assumptions about the characteristics of the components.

Alternate versions

There are several alternate versions of the paradox. One is the original circuit with the two capacitors initially charged with equal and opposite voltages and . [4] Another equivalent version is a single charged capacitor short circuited by a perfect conductor. In these cases in the final state the entire charge has been neutralized, the final voltage on the capacitors is zero, so the entire initial energy has vanished. The solutions to where the energy went are similar to those described in the previous section.

See also

Related Research Articles

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Electromotive force</span> Electrical action produced by a non-electrical source

In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.

In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy is returned to the circuit. Greater reactance gives smaller current for the same applied voltage.

<span class="mw-page-title-main">Capacitance</span> Ability of a body to store an electrical charge

Capacitance is the capability of a material object or device to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance. An object that can be electrically charged exhibits self capacitance, for which the electric potential is measured between the object and ground. Mutual capacitance is measured between two components, and is particularly important in the operation of the capacitor, an elementary linear electronic component designed to add capacitance to an electric circuit.

In electrical engineering, electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components, the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases, infinitesimal elements are used to model the network in a distributed-element model.

<span class="mw-page-title-main">Johnson–Nyquist noise</span> Electronic noise due to thermal vibration within a conductor

Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

<span class="mw-page-title-main">Gyrator</span> Two-port non-reciprocal network element

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

<span class="mw-page-title-main">RC time constant</span> Time constant of an RC circuit

The RC time constant, denoted τ, the time constant of a resistor–capacitor circuit, is equal to the product of the circuit resistance and the circuit capacitance, i.e.:

<span class="mw-page-title-main">LC circuit</span> Electrical "resonator" circuit, consisting of inductive and capacitive elements with no resistance

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

<span class="mw-page-title-main">AC power</span> Power in alternating current systems

In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.

<span class="mw-page-title-main">Capacitor types</span> Manufacturing styles of an electronic device

Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.

<span class="mw-page-title-main">Q meter</span>

A Q meter is a piece of equipment used in the testing of radio frequency circuits. It has been largely replaced in professional laboratories by other types of impedance measuring devices, though it is still in use among radio amateurs. It was developed at Boonton Radio Corporation in Boonton, New Jersey in 1934 by William D. Loughlin.

<span class="mw-page-title-main">Electrical resonance</span> Canceling impedances at a particular frequency

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

There are several formal analogies that can be made between electricity, which is invisible to the eye, and more familiar physical behaviors, such as the flowing of water or the motion of mechanical devices.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.

A switched capacitor (SC) is an electronic circuit that implements a function by moving charges into and out of capacitors when electronic switches are opened and closed. Usually, non-overlapping clock signals are used to control the switches, so that not all switches are closed simultaneously. Filters implemented with these elements are termed switched-capacitor filters, which depend only on the ratios between capacitances and the switching frequency, and not on precise resistors. This makes them much more suitable for use within integrated circuits, where accurately specified resistors and capacitors are not economical to construct, but accurate clocks and accurate relative ratios of capacitances are economical.

The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.

This article provides a more detailed explanation of p–n diode behavior than is found in the articles p–n junction or diode.

<span class="mw-page-title-main">Single-electron transistor</span>

A single-electron transistor (SET) is a sensitive electronic device based on the Coulomb blockade effect. In this device the electrons flow through a tunnel junction between source/drain to a quantum dot. Moreover, the electrical potential of the island can be tuned by a third electrode, known as the gate, which is capacitively coupled to the island. The conductive island is sandwiched between two tunnel junctions modeled by capacitors, and , and resistors, and , in parallel.

Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics.

References

  1. 1 2 Levine, Richard C. (December 1967). "Apparent Nonconservation of Energy in the Discharge of an Ideal Capacitor". IEEE Transactions on Education. Institute of Electrical and Electronics Engineers. 10 (4): 197–202. Bibcode:1967ITEdu..10..197L. doi:10.1109/TE.1967.4320288. ISSN   1557-9638.
  2. 1 2 3 McDonald, Kirk T. (11 January 2018). "A Capacitor Paradox". Physics Dept., Princeton University. Retrieved 12 June 2018.
  3. Zucker, Charles (October 1955). "Condenser problem". American Journal of Physics. American Association of Physics Teachers. 23 (7): 469. Bibcode:1955AmJPh..23..469Z. doi:10.1119/1.1934050.
  4. 1 2 3 4 Epsilon (December 1978). "Did you know?" (PDF). Wireless World. London: IPC Business Press, Ltd. 84 (1516): 67. ISSN   0043-6062 . Retrieved 12 June 2018.
  5. Nahin, Paul J. (2001). The Science of Radio: with MATLAB and Electronics Workbench® demonstrations. New York: Springer. pp. 49–51. ISBN   9780387951508., prob. 4.1
  6. Halliday, D.; Resnick, R.; Walker, J (1993). Fundamentals of Physics (4 ed.). New York: John Wiley and Sons. ISBN   0471524611.
  7. Mita, K.; Boufaida, M. (August 1999). "Ideal capacitor circuits and energy conservation". American Journal of Physics. American Association of Physics Teachers. 67 (8): 737. Bibcode:1999AmJPh..67..737M. doi:10.1119/1.19363.
  8. Boykin, Timothy B.; Hite, Dennis; Singh, Nagendra (March 2002). "The two-capacitor problem with radiation". American Journal of Physics. American Assoc. of Physics Teachers. 70 (4): 415. Bibcode:2002AmJPh..70..415B. doi:10.1119/1.1435344.