UNIVAC 1103

Last updated
UNIVAC 1103
UNIVAC-1103-BRL61-0905.jpg
UNIVAC 1103A
Also known asERA 1103
Developer Engineering Research Associates
Manufacturer Remington Rand
Release date1953;71 years ago (1953)
MemoryTotal random-access memory of 1024 words of 36 bits each (36 Williams tubes with a capacity of 1024 bits each)
Mass38,543 pounds (19.3 short tons; 17.5 t)
Predecessor UNIVAC 1101
SuccessorUNIVAC 1103A

The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, [1] is a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work. [2]

Contents

History

Even before the completion of the Atlas (UNIVAC 1101), the Navy asked Engineering Research Associates to design a more powerful machine. This project became Task 29, and the computer was designated Atlas II.

In 1952, Engineering Research Associates asked the Armed Forces Security Agency (the predecessor of the NSA) for approval to sell the Atlas II commercially. Permission was given, on the condition that several specialized instructions would be removed. The commercial version then became the UNIVAC 1103. Because of security classification, Remington Rand management was unaware of this machine before this. The first commercially sold UNIVAC 1103 was sold to the aircraft manufacturer Convair, where Marvin Stein worked with it.[ citation needed ]

Remington Rand announced the UNIVAC 1103 in February 1953. The machine competed with the IBM 701 in the scientific computation market. In early 1954, a committee of the Joint Chiefs of Staff requested that the two machines be compared for the purpose of using them for a Joint Numerical Weather Prediction project. Based on the trials, the two machines had comparable computational speed, with a slight advantage for IBM's machine, but the latter was favored unanimously for its significantly faster input-output equipment. [3]

The successor machines are the UNIVAC 1103A or Univac Scientific, which improved upon the design by replacing the unreliable Williams tube memory with magnetic-core memory, adding hardware floating-point instructions, and perhaps the earliest occurrence of a hardware interrupt feature, [4] and the later UNIVAC 1105

Technical details

The system used electrostatic storage, consisting of 36 Williams tubes with a capacity of 1024 bits each, giving a total random-access memory of 1024 words of 36 bits each. Each of the 36 Williams tubes was five inches in diameter. A magnetic drum memory provided 16,384 words. Both the electrostatic and drum memories were directly addressable: addresses 0 through 01777 (Octal) were in electrostatic memory and 040000 through 077777 (Octal) were on the drum.

Fixed-point numbers had a 1-bit sign and a 35-bit value, with negative values represented in ones' complement format.[ citation needed ]

Instructions had a 6-bit operation code and two 15-bit operand addresses.[ citation needed ]

Programming systems for the machine included the RECO regional coding assembler by Remington-Rand, the RAWOOP one-pass assembler and SNAP floating point interpretive system authored by the Ramo-Wooldridge Corporation of Los Angeles, the FLIP floating point arithmetic interpretive system by Consolidated Vultee Aircraft of San Diego, and the CHIP floating point interpretive system by Wright Field in Ohio.

UNIVAC 1103/A weighed about 38,543 pounds (19.3 short tons; 17.5 t). [5]

1103A

The UNIVAC 1103A or Univac Scientific is an upgraded version introduced in March 1956. [6] [7] [1] [ page needed ]

Significant new features on the 1103A were its magnetic-core memory and the addition of interrupts to the processor. [8] The UNIVAC 1103A had up to 12,288 words of 36-bit magnetic core memory, in one to three banks of 4,096 words each.

Fixed-point numbers had a one-bit sign and a 35-bit value, with negative values represented in ones' complement format. Floating-point numbers had a one-bit sign, an eight-bit characteristic, and a 27-bit mantissa. Instructions had a six-bit operation code and two 15-bit operand addresses.

The 1103A was contemporary with, and a competitor to, the IBM 704, which also employed vacuum-tube logic, magnetic-core memory, and floating-point hardware.

A version of this machine was sold to the Lewis Research Center, NACA (National Advisory Committee for Aeronautics) in Cleveland, Ohio. It had the first magnetic core of 1096 words of 36 bits. The magnetic drum storage has a capacity of 16,384 words, and the clock speed is 500KHz. Input/output is teletype paper tape. When NACA became NASA in 1958, a series of improvements was begun to improve functionality and reliability. Over the next ten years, the machine was significantly upgraded by replacing the magnetic core with a commercial solid state 16,384 word magnetic core system. An 8 unit magnetic tape system, a floating point arithmetic unit, and an indirect addressing unit were designed and built in-house. All solid-state commercial electronics modules were interfaced to the vacuum tube electronics in the original machine.

1104

The 1104 system is a 30-bit version of the 1103 built for Westinghouse Electric in 1957, for use on the BOMARC Missile Program. However, by the time the BOMARC was deployed in the 1960s, a more modern computer (a version of the AN/USQ-20, designated the G-40) had replaced the UNIVAC 1104. [9]

1105

The UNIVAC 1105 is a follow-on computer to the UNIVAC 1103A introduced by Sperry Rand in September 1958.

See also

Related Research Articles

<span class="mw-page-title-main">UNIVAC I</span> First general-purpose computer designed for business application (1951)

The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".

<span class="mw-page-title-main">IBM 650</span> Vacuum-tube 1950s computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass-produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most popular computer of the 1950s.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">JOHNNIAC</span> Early computer built by the RAND Corporation, in service 1953-1966

The JOHNNIAC was an early computer built by the RAND Corporation and based on the von Neumann architecture that had been pioneered on the IAS machine. It was named in honor of von Neumann, short for John von NeumannNumerical Integrator and Automatic Computer.

<span class="mw-page-title-main">Drum memory</span> Magnetic data storage device

Drum memory was a magnetic data storage device invented by Gustav Tauschek in 1932 in Austria. Drums were widely used in the 1950s and into the 1960s as computer memory.

<span class="mw-page-title-main">UNIVAC 1101</span>

The ERA 1101, later renamed UNIVAC 1101, was a computer system designed and built by Engineering Research Associates (ERA) in the early 1950s and continued to be sold by the Remington Rand corporation after that company later purchased ERA. Its (initial) military model, the ERA Atlas, was the first stored-program computer that was moved from its site of manufacture and successfully installed at a distant site. Remington Rand used the 1101's architecture as the basis for a series of machines into the 1960s.

<span class="mw-page-title-main">IBM 701</span> Vacuum-tube computer system

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was designed and developed by Jerrier Haddad and Nathaniel Rochester and was based on the IAS machine at Princeton.

<span class="mw-page-title-main">AN/USQ-20</span> Early computer designed for the U S Navy

The AN/USQ-20, or CP-642 or Naval Tactical Data System (NTDS), was designed as a more reliable replacement for the Seymour Cray-designed AN/USQ-17 with the same instruction set. The first batch of 17 computers were delivered to the Navy starting in early 1961.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.

<span class="mw-page-title-main">UNIVAC 1105</span>

The UNIVAC 1105 was a follow-on computer to the UNIVAC 1103A introduced by Sperry Rand in September 1958. The UNIVAC 1105 used 21 types of vacuum tubes, 11 types of diodes, 10 types of transistors, and three core types.

<span class="mw-page-title-main">IBM 709</span> Vacuum tube computer system

The IBM 709 is a computer system that was initially announced by IBM in January 1957 and first installed during August 1958. The 709 was an improved version of its predecessor, the IBM 704, and was the third of the IBM 700/7000 series of scientific computers. The improvements included overlapped input/output, indirect addressing, and three "convert" instructions which provided support for decimal arithmetic, leading zero suppression, and several other operations. The 709 had 32,768 words of 36-bit magnetic core memory and could execute 42,000 add or subtract instructions per second. It could multiply two 36-bit integers at a rate of 5000 per second.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

The UNIVAC Solid State was a magnetic drum-based solid-state computer announced by Sperry Rand in December 1958 as a response to the IBM 650. It was one of the first computers offered for sale to be (nearly) entirely solid-state, using 700 transistors, and 3000 magnetic amplifiers (FERRACTOR) for primary logic, and 20 vacuum tubes largely for power control. It came in two versions, the Solid State 80 and the Solid State 90. In addition to the "80/90" designation, there were two variants of the Solid State – the SS I 80/90 and the SS II 80/90. The SS II series included two enhancements – the addition of 1,280 words of core memory and support for magnetic tape drives. The SS I had only the standard 5,000-word drum memory described in this article and no tape drives.

<span class="mw-page-title-main">UNIVAC LARC</span> Livermore Advanced Research Computer

The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers.

<span class="mw-page-title-main">AN/FSQ-7 Combat Direction Central</span> A computerized command and control system for Cold War ground-controlled interception

The AN/FSQ-7 Combat Direction Central, referred to as the Q7 for short, was a computerized air defence command and control system. It was used by the United States Air Force for ground-controlled interception as part of the Semi-Automatic Ground Environment network during the Cold War.

The UNIVAC 418 was a transistorized, 18-bit word magnetic-core memory machine made by Sperry Univac. The name came from its 4-microsecond memory cycle time and 18-bit word. The assembly language for this class of computers was TRIM III and ART418.

<span class="mw-page-title-main">IBM 702</span> Early vacuum-tube computer system

The IBM 702 was an early generation tube-based digital computer produced by IBM in the early to mid-1950s. It was the company's response to Remington Rand's UNIVAC, which was the first mainframe computer to use magnetic tapes. As these machines were aimed at the business market, they lacked the leading-edge computational power of the IBM 701 and ERA 1103, which were favored for scientific computing, weather forecasting, the aircraft industry, and the military and intelligence communities.

<span class="mw-page-title-main">RCA Spectra 70</span> Series of mainframe computers manufactured by RCA starting in 1965

The RCA Spectra 70 is a line of electronic data processing (EDP) equipment that was manufactured by the Radio Corporation of America’s computer division beginning in April 1965. The Spectra 70 line included several CPU models, various configurations of core memory, mass-storage devices, terminal equipment, and a variety of specialized interface equipment.

<span class="mw-page-title-main">Vacuum-tube computer</span> Earliest electronic computer design

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.

<span class="mw-page-title-main">SDS 9 Series</span> Backward compatible line of transistorized computers

The SDS 9 Series computers are a backward compatible line of transistorized computers produced by Scientific Data Systems in the 1960s and 1970s. This line includes the SDS 910, SDS 920, SDS 925, SDS 930, SDS 940, and the SDS 945. The SDS 9300 is an extension of the 9xx architecture. The 1965 SDS 92 is an incompatible 12-bit system built using monolithic integrated circuits.

References

  1. 1 2 McMurran, Marshall William (11 December 2008). ACHIEVING ACCURACY: A Legacy of Computers and Missiles. ISBN   978-1-4628-1065-9.
  2. "Tribute to Seymour Cray". IEEE Computer Society. Archived from the original on 2010-08-24.
  3. Emerson W. Pugh; Lyle R. Johnson; John H. Palmer (1991). IBM's 360 and early 370 systems. MIT Press. pp.  23–34. ISBN   0-262-16123-0.
  4. Smotherman, Mark. "Interrupts" . Retrieved Feb 18, 2019.
  5. Weik, Martin H. (June 1957). "UNIVAC SCIENTIFIC 1103". ed-thelen.org. A Second Survey of Domestic Electronic Digital Computing Systems.
  6. Data Management. Data Processing Management Association. 1972. p. 28.
  7. Ballot, Michael (1973). The Time-phasing and Size of Computer Installations. Stanford University. p. 233.
  8. Rául Rojas; Ulf Hashagen (2002). The first computers: history and architectures. MIT Press. p. 198. ISBN   0-262-68137-4.
  9. George Gray (January 2002). "The 1104". Unisys History Newsletter. 6 (1). Archived from the original on March 5, 2016. Retrieved December 28, 2013.

Further reading