USP9X

Last updated
USP9X
Identifiers
Aliases USP9X , DFFRX, FAF, FAM, MRX99, MRXS99F, ubiquitin specific peptidase 9, X-linked, ubiquitin specific peptidase 9 X-linked, XLID99
External IDs OMIM: 300072 MGI: 894681 HomoloGene: 3418 GeneCards: USP9X
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001039590
NM_001039591
NM_004652
NM_021906

NM_009481

RefSeq (protein)

NP_001034679
NP_001034680

NP_033507

Location (UCSC) Chr X: 41.09 – 41.24 Mb Chr X: 12.94 – 13.04 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Probable ubiquitin carboxyl-terminal hydrolase FAF-X is an enzyme that in humans is encoded by the USP9X gene. [5] [6]

Contents

Function

This gene is a member of the peptidase C19 family and encodes a protein that is similar to ubiquitin-specific proteases. Though this gene is located on the X chromosome, it escapes X-inactivation.

Depletion of USP9X from two-cell mouse embryos halts blastocyst development and results in slower blastomere cleavage rate, impaired cell adhesion and a loss of cell polarity. It has also been implicated that USP9X is likely to influence developmental processes through signaling pathways of Notch, Wnt, EGF, and mTOR. USP9X has been recognized in studies of mouse and human stem cells involving embryonic, neural and hematopoietic stem cells. [7] High expression is retained in undifferentiated progenitor and stem cells and decreases as differentiation continues. USP9X is a protein-coding gene that has been implicated either directly through mutations or indirectly in a number of neurodevelopmental and neurodegenerative disorders. Three mutations have been connected with X-linked intellectual disability through disrupted neuronal growth and cell migration. Neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's disease, have also been linked to USP9X. Specifically, USP9X has been implicated in the regulation of the phosphorylation and expression of the microtule-associated protein tau, which forms pathological aggregates in Alzheimer's and other tauopathies. [8] Scientists have generated a knockout model where they isolated hippocampal neurons from an USP9X-knockout male mouse, which showed a 43% reduction in axonal length and arborization compared to wild type. [9]

Interactions

USP9X has been shown to interact with:

USP9X Syndrome

Variants of the USP9X gene have been found to cause a neurodevelopmental USP9X syndrome in both males and females. USP9X is strongly evolutionarily conserved in humans and is intolerant to variation. This is due to the important role of the USP9X enzyme, which reverses protein ubiquitylation, thereby decreasing the enzymatic degradation and increasing the longevity of those proteins. [15] Being on the X chromosome, USP9X syndrome manifests differently in females compared to males. In females, loss of function variations in one copy of the gene results in haploinsufficiency. This is because USP9X escapes the usually-protective process of X-inactivation. As a result, even “carrier” females exhibit the syndrome.

Variants found in females with USP9X syndrome include whole or partial deletions of one copy of the USP9X gene, as well as mis-sense mutations or small in-frame deletion mutations. [15] Symptoms in females include intellectual disability, facial dysmorphia, and language impairment. Less common symptoms include short stature, scoliosis, polydactyly, and changes to dentition. [16] Females have a wider range of symptoms than males, likely due to their wider variety of USP9X gene variants compared to males. Other symptoms sometimes found in females but rarely or never in males include hip dysplasia, heart dysmorphia, hearing problems and abnormal skin pigmentation. [15]

USP9X variants seen in surviving males cause loss of function in brain-specific processes only, since total loss of function of this gene is fatal in the embryonic stage. Males are hemizygous for this gene because they possess only one X chromosome. Symptoms seen in affected males include intellectual disability, problems with language, speech, behaviour and sight, and facial dysmorphia. Specific brain abnormalities include white matter disturbances, a thin corpus callosum, and widened ventricles. [17]

Related Research Articles

<span class="mw-page-title-main">Deubiquitinating enzyme</span>

Deubiquitinating enzymes (DUBs), also known as deubiquitinating peptidases, deubiquitinating isopeptidases, deubiquitinases, ubiquitin proteases, ubiquitin hydrolases, or ubiquitin isopeptidases, are a large group of proteases that cleave ubiquitin from proteins. Ubiquitin is attached to proteins in order to regulate the degradation of proteins via the proteasome and lysosome; coordinate the cellular localisation of proteins; activate and inactivate proteins; and modulate protein-protein interactions. DUBs can reverse these effects by cleaving the peptide or isopeptide bond between ubiquitin and its substrate protein. In humans there are nearly 100 DUB genes, which can be classified into two main classes: cysteine proteases and metalloproteases. The cysteine proteases comprise ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), Machado-Josephin domain proteases (MJDs) and ovarian tumour proteases (OTU). The metalloprotease group contains only the Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain proteases.

<span class="mw-page-title-main">Histone-modifying enzymes</span> Type of enzymes

Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. To safely store the eukaryotic genome, DNA is wrapped around four core histone proteins, which then join to form nucleosomes. These nucleosomes further fold together into highly condensed chromatin, which renders the organism's genetic material far less accessible to the factors required for gene transcription, DNA replication, recombination and repair. Subsequently, eukaryotic organisms have developed intricate mechanisms to overcome this repressive barrier imposed by the chromatin through histone modification, a type of post-translational modification which typically involves covalently attaching certain groups to histone residues. Once added to the histone, these groups elicit either a loose and open histone conformation, euchromatin, or a tight and closed histone conformation, heterochromatin. Euchromatin marks active transcription and gene expression, as the light packing of histones in this way allows entry for proteins involved in the transcription process. As such, the tightly packed heterochromatin marks the absence of current gene expression.

<span class="mw-page-title-main">Afadin</span> Protein-coding gene in the species Homo sapiens

Afadin is a protein that in humans is encoded by the AFDN gene.

<span class="mw-page-title-main">USP7</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-specific-processing protease 7 (USP7), also known as ubiquitin carboxyl-terminal hydrolase 7 or herpesvirus-associated ubiquitin-specific protease (HAUSP), is an enzyme that in humans is encoded by the USP7 gene.

<span class="mw-page-title-main">USP8</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 8 is an enzyme that in humans is encoded by the USP8 gene.

<span class="mw-page-title-main">USP6</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 6 (USB6), also termed TRE17 and Tre-2, is a deubiquitinating enzyme that in humans is encoded by the hominid USP6 gene located at band 13.2 on the short arm of chromosome 17. Deubiquitinating enzymes (DUBs) are enzymes that act within cells to remove ubiquitins from various functionally important proteins. Ubiquitin enzymes add ubiquitin to these proteins and thereby regulate their cellular location, alter their activity, and/or promote their degradation. By deubiquitinating these proteins, DUBs counter the effects of the ubiquinating enzymes and contribute to regulating the actions of the targeted proteins. In normal adult tissues, USP6 is highly expressed in testicle tissue, modestly expressed in ovarian tissue, and absent or minimally expressed in other tissues. It is also highly expressed in fetal brain tissue. The specific functions of USP6 are poorly defined primarily because its presence is restricted to primates: there are no available animal models to determine the effects of its deletion, although some studies suggest that UPSP6 contributes to normal brain development. In all events, USP6 has gained wide interest because of its abnormally increased expression by the neoplastic cells in various tumors derived from mesenchymal tissue.

<span class="mw-page-title-main">USP10</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific peptidase 10, also known as USP10, is an enzyme which in humans is encoded by the USP10 gene.

<span class="mw-page-title-main">USP16</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 16 is an enzyme that in humans is encoded by the USP16 gene.

<span class="mw-page-title-main">USP4</span> Protein-coding gene in the species Homo sapiens

Ubiquitin specific protease 4 (USP4) is an enzyme that cleaves ubiquitin from a number of protein substrates. Prior to the standardization of nomenclature USP4 was known as UNP, and was one of the first deubiquitinating enzymes to be identified in mammals. In the mouse and human the USP4 protein is encoded by a gene containing 22 exons.

<span class="mw-page-title-main">USP11</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase or Ubiquitin specific protease 11 is an enzyme that in humans is encoded by the USP11 gene. USP11 belongs to the Ubiquitin specific proteases family (USPs) which is a sub-family of the Deubiquitinating enzymes (DUBs).USPs are multiple domain proteases and belong to the C19 cysteine proteases sub‒family. Depending on their domain architecture and position there is different homology between the various members. Generally the largest domain is the catalytic domain which harbours the three residue catalytic triad that is included inside conserved motifs. The catalytic domain also contains sequences that are not related with the catalysis function and their role is mostly not clearly understood at present, the length of these sequences varies for each USP and therefore the length of the whole catalytic domain can range from approximately 295 to 850 amino acids. Particular sequences inside the catalytic domain or at the N‒terminus of some USPs have been characterised as UBL and DUSP domains respectively. In some cases, regarding the UBL domains, it has been reported to have a catalysis enhancing function as in the case of USP7. In addition, a so‒called DU domain module is the combination of a DUSP domain followed by a UBL domain separated by a linker and is found in USP11 as well as in USP15 and USP4.

<span class="mw-page-title-main">USP36</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-specific protease 36 is an enzyme that in humans is encoded by the USP36 gene.

<span class="mw-page-title-main">USP15</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 15 is an enzyme that in humans is encoded by the USP15 gene.

<span class="mw-page-title-main">RNF41</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase NRDP1 is an enzyme that in humans is encoded by the RNF41 gene.

<span class="mw-page-title-main">USP33</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 33 is an enzyme that in humans is encoded by the USP33 gene.

<span class="mw-page-title-main">UBE2J1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-conjugating enzyme E2 J1 is a protein that in humans is encoded by the UBE2J1 gene.

<span class="mw-page-title-main">USP48</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 48 is an enzyme that in humans is encoded by the USP48 gene.

<span class="mw-page-title-main">USP14</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-specific protease 14 is an enzyme that in humans is encoded by the USP14 gene.

<span class="mw-page-title-main">USP20</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 20 is an enzyme that in humans is encoded by the USP20 gene.

<span class="mw-page-title-main">Ectoderm specification</span> Stage in embryonic development

In Xenopus laevis, the specification of the three germ layers occurs at the blastula stage. Great efforts have been made to determine the factors that specify the endoderm and mesoderm. On the other hand, only a few examples of genes that are required for ectoderm specification have been described in the last decade. The first molecule identified to be required for the specification of ectoderm was the ubiquitin ligase Ectodermin ; later, it was found that the deubiquitinating enzyme, FAM/USP9x, is able to overcome the effects of ubiquitination made by Ectodermin in Smad4. Two transcription factors have been proposed to control gene expression of ectodermal specific genes: POU91/Oct3/4 and FoxIe1/Xema. A new factor specific for the ectoderm, XFDL156, has shown to be essential for suppression of mesoderm differentiation from pluripotent cells.

<span class="mw-page-title-main">USP27X</span> Enzyme

The ubiquitin carboxyl-terminal hydrolase 27, also known as deubiquitinating enzyme 27, ubiquitin thioesterase 27 and USP27X, is a deubiquitinating enzyme which is mainly characterized for cleaving ubiquitin (Ub) from proteins and other molecules. Ubiquitin binds to proteins so as to regulate the degradation of them via the proteasome and lysosome among many other functions.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000124486 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031010 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Jones MH, Furlong RA, Burkin H, Chalmers IJ, Brown GM, Khwaja O, Affara NA (1996). "The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2". Hum. Mol. Genet. 5 (11): 1695–701. doi: 10.1093/hmg/5.11.1695 . PMID   8922996.
  6. "Entrez Gene: USP9X ubiquitin specific peptidase 9, X-linked".
  7. Murtaza M, Jolly LA, Gecz J, Wood SA (2015-01-01). "La FAM fatale: USP9X in development and disease". Cellular and Molecular Life Sciences. 72 (11): 2075–2089. doi:10.1007/s00018-015-1851-0. ISSN   1420-682X. PMC   4427618 . PMID   25672900.
  8. Köglsberger S, Cordero-Maldonado ML, Antony P, Forster JI, Garcia P, Buttini M, Crawford A, Glaab E (2016-12-01). "Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and Phosphorylation: Possible Implications for Tauopathies". Molecular Neurobiology. 54 (10): 7979–7993. doi:10.1007/s12035-016-0299-z. PMC   5684262 . PMID   27878758.
  9. "OMIM Entry - * 300072 - UBIQUITIN-SPECIFIC PROTEASE 9, X-LINKED; USP9X". www.omim.org. Retrieved 2016-04-12.
  10. 1 2 Taya S, Yamamoto T, Kanai-Azuma M, Wood SA, Kaibuchi K (Dec 1999). "The deubiquitinating enzyme Fam interacts with and stabilizes beta-catenin". Genes Cells. 4 (12): 757–67. doi: 10.1046/j.1365-2443.1999.00297.x . PMID   10620020. S2CID   85747886.
  11. 1 2 Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR (Apr 2008). "Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains" (PDF). Biochem. J. 411 (2): 249–60. doi:10.1042/BJ20080067. PMID   18254724. S2CID   13038944.
  12. Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, Tanaka K, Kanai-Azuma M, Wood SA, Mattick JS, Kaibuchi K (Aug 1998). "The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme". J. Cell Biol. 142 (4): 1053–62. doi:10.1083/jcb.142.4.1053. PMC   2132865 . PMID   9722616.
  13. Wang S, Kollipara RK, Srivastava N, Li R, Ravindranathan P, Hernandez E, Freeman E, Humphries CG, Kapur P, Lotan Y, Fazli L, Gleave ME, Plymate SR, Raj GV, Hsieh JT, Kittler R (2014). "Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer". Proc. Natl. Acad. Sci. U.S.A. 111 (11): 4251–6. Bibcode:2014PNAS..111.4251W. doi: 10.1073/pnas.1322198111 . PMC   3964108 . PMID   24591637.
  14. Li X, Song N, Liu L, Liu X, Ding X, Song X, Yang S, Shan L, Zhou X (2017-03-31). "USP9X regulates centrosome duplication and promotes breast carcinogenesis". Nature Communications. 8: 14866. Bibcode:2017NatCo...814866L. doi:10.1038/ncomms14866. ISSN   2041-1723. PMC   5380967 . PMID   28361952.
  15. 1 2 3 Jolly LA, Parnell E, Gardner AE, Corbett MA, Pérez-Jurado LA, Shaw M, Lesca G, Keegan C, Schneider MC, Griffin E, Maier F, Kiss C, Guerin A, Crosby K, Rosenbaum K (2020-12-09). "Missense variant contribution to USP9X-female syndrome". npj Genomic Medicine. 5 (1): 53. doi:10.1038/s41525-020-00162-9. ISSN   2056-7944. PMC   7725775 . PMID   33298948.
  16. "USP9X". Simons Searchlight. Retrieved 2023-02-22.
  17. Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, Parnell E, Yoon S, Oh T, Lines M, Lefroy H (2020-01-15). "Partial loss of USP9X function leads to a male neurodevelopmental and behavioural disorder converging on TGFβ signalling". Biological Psychiatry. 87 (2): 100–112. doi:10.1016/j.biopsych.2019.05.028. ISSN   0006-3223. PMC   6925349 . PMID   31443933.

Further reading