Unresolved complex mixture

Last updated
Examples of non-biodegraded crude oil (top) and a heavily biodegraded one (bottom) with the UCM area indicated. Both chromatograms have been normalized so that their integrals are equal to unity. NonBiodegradedAndBiodegraded.png
Examples of non-biodegraded crude oil (top) and a heavily biodegraded one (bottom) with the UCM area indicated. Both chromatograms have been normalized so that their integrals are equal to unity.

Unresolved complex mixture (UCM), or hump, is a feature frequently observed in gas chromatographic (GC) data of crude oils and extracts from organisms exposed to oil. [1]

Contents

The reason for the UCM hump appearance is that GC cannot resolve and identify a significant part of the hydrocarbons in crude oils. The resolved components appear as peaks while the UCM appears as a large background/platform. In non-biodegraded oils the UCM may comprise less than 50% of the total area of the chromatogram, while in biodegraded oils this figure can rise to over 90%. UCMs are also observed in certain refined fractions such as lubricating oils [1] and references therein.

One reason why it is important to study the nature of UCMs is that some have been shown to contain toxic components, [2] [3] [4] [5] [6] [7] [8] [9] [10] but only a small range of known petrogenic toxicants, such as the USEPA list of 16 polycyclic aromatic hydrocarbons (PAHs), tend to be routinely monitored in the environment.

Analysis of the hydrocarbon fraction of crude oils by GC reveals a complex mixture containing many thousands of individual components. [11] Components that are resolved by GC have been extensively studied e.g. [12] However, despite the application of many analytical techniques the remaining components have, until very recently, proved difficult to separate due to the large numbers of co-eluting compounds. Gas chromatograms of mature oils have prominent n-alkane peaks which distract attention from the underlying unresolved complex mixture (UCM) of hydrocarbons often referred to as the ‘hump’. Processes such as weathering and biodegradation result in a relative enrichment of the UCM component by removal of resolved components and the creation of new compounds. [13] It has been shown that both resolved and unresolved components of oils are subject to concurrent biodegradation, [1] i.e. it is not a sequential process, but due to the recalcitrant nature of some components, the rates of biodegradation of individual compounds greatly varies. The UCM fraction often represents the major component of hydrocarbons within hydrocarbon-polluted sediments [5] (see reference therein) and biota e.g. [2] [3] [14] [15] A number of studies has now demonstrated that aqueous exposure to components within the UCM can affect the health of marine organisms, [2] [3] [4] [5] [6] [7] [8] including possible hormonal disruption, [9] and high concentrations of environmental UCMs have been strongly implicated with impaired health in wild populations. [4] [7] [16] [17]

Weathering and biodegradion of oils within the marine environment

Environmental UCMs result from highly degraded petroleum hydrocarbons and once formed they can stay largely unchanged in sediments for many years. For example, in 1969 a diesel oil spill contaminated saltmarsh sediment within Wild Harbor River, US; by 1973 only a baseline hump was observed, which remained largely unchanged within the anaerobic sediment for the next 30 years. [18] In a study of the potential for UCM-dominated oil to be further degraded, it was concluded that even using bacteria specifically adapted for complex UCM hydrocarbons in conjunction with nutrient enrichment, biodegradation rates would still be relatively slow. [19] Bacterial degradation of hydrocarbons is complex and will depend on environmental conditions (e.g. aerobic or anaerobic, temperature, nutrient availability, available species of bacteria etc.).

Analysis of UCM hydrocarbons

A relatively recent analytical tool that has been used for the separation of UCMs is comprehensive two-dimensional GC (GCxGC). This powerful technique, introduced by Liu and Phillips [20] combines two GC columns with different separation mechanisms: typically a primary column that separates compounds based on volatility coupled to a second short column that separates by polarity. The two columns are connected by a modulator, a device that traps, focuses and re-injects the peaks that elute from the first column into the second column. Each peak eluting from the first column (which may be a number of co-eluting peaks) is further separated on the second column. The second separation is rapid, allowing the introduction of subsequent fractions from the first column without mutual interference. Dallüge et al. [21] reviewed the principles, advantages and main characteristics of this technique. One of the main advantages is the very high separation power, making the technique ideal for unravelling the composition of complex mixtures. Another important feature of GC×GC is that chemically related compounds show up as ordered structures within the chromatograms, i.e. isomers appear as distinct groups in the chromatogram as a result of their similar interaction with the second dimension column phase. [22] The use of GC×GC for the characterization of complex petrochemical mixtures has been extensively reviewed. [23] Most research into petrochemical hydrocarbons using GC×GC has utilised flame ionisation detection (FID) but mass spectrometry (MS) is necessary to obtain the structural information necessary to identify unknown compounds. Currently, only time-of-flight MS (ToF-MS) can deliver the high acquisition rates required to analyse GC×GC.

Toxicity of UCM hydrocarbon components

There is compelling evidence that components within some UCMs are toxic to marine organisms. The clearance rate (also known as feeding feed) of mussels was reduced by 40% following exposure to a monoaromatic UCM derived from a Norwegian crude oil. [10] The toxicity of monoaromatic UCM components was further evidenced by an elegant set of experiments using transplantations of clean and polluted mussels. [3] Recent analysis by GC×GC-ToF-MS of UCMs extracted from the mussel tissues, has shown that they contain a vast array of both known and unknown compounds. [4] The comparative analysis of UCMs extracted from mussels known to possess high, moderate and low Scope for Growth (SfG), a measure of the capacity for growth and reproduction, [24] revealed that branched alkylbenzenes represented the largest structural class within the UCM of mussels with low SfG; also, branched isomers of alkyltetralins, alkylindanes and alkylindenes were prominent in the stressed mussels. [4] Laboratory toxicity tests using both commercially available and specially synthesised compounds revealed that such branched alkylated structures were capable of producing the observed poor health of the mussels. [4] [7] The reversible effects observed in mussels following exposure to the UCM hydrocarbons identified to date are consistent with non-specific narcosis (also known as baseline) mode of action of toxicity. [6] There is no evidence that toxic UCM components can biomagnify through the food chain. Crabs ( Carcinus maenas ) that were fed a diet of mussels contaminated with environmentally realistic concentrations of branched alkylbenzenes, suffered behavioural disruption but only a small concentration of the compounds were retained in the midgut of the crabs. [8] Within marsh sediments still contaminated with high concentrations of UCM hydrocarbons from the Florida barge oil spill in 1969 (see above,) the behaviour and feeding of fiddler crabs (Uca pugnax) was reported to be affected. [25]

Polar UCMs

Much of the past research into the composition and toxicity of UCM hydrocarbons has been conducted by the Petroleum and Environmental Geochemistry Group (PEGG) [26] at the University of Plymouth, UK. As well as the hydrocarbon UCM, oils also contain more polar compounds such as those containing oxygen, sulphur or nitrogen. These compounds can be very soluble in water and hence bioavailable to marine and aquatic organisms. Polar UCMs are present within produced waters from oil rigs and from oil sands processing. A polar UCM fraction extracted from North Sea oil produced water was reported to elicit hormonal disruption by way of both estrogen receptor agonist and androgen receptor agonist activity. [9] Ongoing concern regarding the potential toxicity of components within Athabasca Oil Sands (Canada) tailings ponds has highlighted the need for identification of the compounds present. Until recently, such positive identification of individual so-called naphthenic acids from oil sands produced waters had so far eluded characterisation but recent research by PEGG presented at a SETAC conference in 2010 [27] revealed that, using a new GCxGC-TOF-MS, it was possible to resolve and identify a range of new compounds within such highly complex extracts. One group of compounds found to be present were tricyclic diamondoid acids. [28] These structures had previously not even been considered as naphthenic acids and suggests an unprecedented degree of biodegradation of some of the oil in the oil sands.

See also

Related Research Articles

<span class="mw-page-title-main">Creosote</span> Tar distillation byproduct used as wood preservative

Creosote is a category of carbonaceous chemicals formed by the distillation of various tars and pyrolysis of plant-derived material, such as wood, or fossil fuel. They are typically used as preservatives or antiseptics.

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique in analytical chemistry

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc, which have been dissolved into liquid solutions.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer considerable advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Column chromatography</span> Method to isolate a compound in a mixture

Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential adsorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column.

<span class="mw-page-title-main">Petroleum coke</span> Solid carbon-rich material

Petroleum coke, abbreviated coke, pet coke or petcoke, is a final carbon-rich solid material that derives from oil refining, and is one type of the group of fuels referred to as cokes. Petcoke is the coke that, in particular, derives from a final cracking process—a thermo-based chemical engineering process that splits long chain hydrocarbons of petroleum into shorter chains—that takes place in units termed coker units. Stated succinctly, coke is the "carbonization product of high-boiling hydrocarbon fractions obtained in petroleum processing ". Petcoke is also produced in the production of synthetic crude oil (syncrude) from bitumen extracted from Canada's tar sands and from Venezuela's Orinoco oil sands.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

Phytane is the isoprenoid alkane formed when phytol, a chemical substituent of chlorophyll, loses its hydroxyl group. When phytol loses one carbon atom, it yields pristane. Other sources of phytane and pristane have also been proposed than phytol.

Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds, pharmaceutical substances, radionuclides and metals.

<span class="mw-page-title-main">Two-dimensional chromatography</span>

Two-dimensional chromatography is a type of chromatographic technique in which the injected sample is separated by passing through two different separation stages. Two different chromatographic columns are connected in sequence, and the effluent from the first system is transferred onto the second column. Typically the second column has a different separation mechanism, so that bands that are poorly resolved from the first column may be completely separated in the second column. Alternately, the two columns might run at different temperatures. During the second stage of separation the rate at which the separation occurs must be faster than the first stage, since there is still only a single detector. The plane surface is amenable to sequential development in two directions using two different solvents.

<span class="mw-page-title-main">Environmental impact of the petroleum industry</span>

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of the rapidly increasing human population, creativity, knowledge, and consumerism.

Comprehensive two-dimensional gas chromatography, or GC×GC, is a multidimensional gas chromatography technique that was originally described in 1984 by J. Calvin Giddings and first successfully implemented in 1991 by John Phillips and his student Zaiyou Liu.

<span class="mw-page-title-main">Dinosterol</span> Chemical compound

Dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) is a 4α-methyl sterol that is produced by several genera of dinoflagellates and is rarely found in other classes of protists. The steroidal alkane, dinosterane, is the 'molecular fossil' of dinosterol, meaning that dinosterane has the same carbon skeleton as dinosterol, but lacks dinosterol's hydroxyl group and olefin functionality. As such, dinosterane is often used as a biomarker to identify the presence of dinoflagelletes in sediments.

<span class="mw-page-title-main">Bergamot essential oil</span> Cold-pressed essential oil

Bergamot essential oil is a cold-pressed essential oil produced by cells inside the rind of a bergamot orange fruit. It is a common flavoring and top note in perfumes. The scent of bergamot essential oil is similar to a sweet light orange peel oil with a floral note.

Petroleum microbiology is a branch of microbiology that deals with the study of microorganisms that can metabolize or alter crude or refined petroleum products. These microorganisms, also called hydrocarbonoclastic microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria, methanogenic archaea, and some fungi. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of bioremediation of oil spills.

The water associated fraction (WAF), sometimes termed the water-soluble fraction (W.S.F.), is the solution of low molecular mass hydrocarbons naturally released from petroleum hydrocarbon mixtures in contact with water. Although generally regarded as hydrophobic, many petroleum hydrocarbons are soluble in water to a limited extent. This combination often also contains less soluble, higher molecular mass components, and more soluble products of chemical and biological degradation.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

<span class="mw-page-title-main">Heavy fuel oil</span> Fuel oils of a tar-like consistency

Heavy fuel oil (HFO) is a category of fuel oils of a tar-like consistency. Also known as bunker fuel, or residual fuel oil, HFO is the result or remnant from the distillation and cracking process of petroleum. For this reason, HFO is contaminated with several different compounds including aromatics, sulfur, and nitrogen, making emissions upon combustion more polluting compared to other fuel oils. HFO is predominantly used as a fuel source for marine vessel propulsion using marine diesel engines due to its relatively low cost compared to cleaner fuel sources such as distillates. The use and carriage of HFO on-board vessels presents several environmental concerns, namely the risk of oil spill and the emission of toxic compounds and particulates including black carbon. The use of HFOs is banned as a fuel source for ships travelling in the Antarctic as part of the International Maritime Organization's (IMO) International Code for Ships Operating in Polar Waters (Polar Code). For similar reasons, an HFO ban in Arctic waters is currently being considered.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

References

  1. 1 2 3 Gough, M. A.; Rowland, S. J. (1990). "Characterization of unresolved complex mixtures of hydrocarbons in petroleum". Nature. Springer Science and Business Media LLC. 344 (6267): 648–650. Bibcode:1990Natur.344..648G. doi:10.1038/344648a0. ISSN   0028-0836. S2CID   4273041.
  2. 1 2 3 Rowland, Steven; Donkin, Peter; Smith, Emma; Wraige, Emma (2001). "Aromatic Hydrocarbon "Humps" in the Marine Environment: Unrecognized Toxins?". Environmental Science & Technology. American Chemical Society (ACS). 35 (13): 2640–2644. Bibcode:2001EnST...35.2640R. doi:10.1021/es0018264. ISSN   0013-936X. PMID   11452586.
  3. 1 2 3 4 Donkin, Peter; Smith, Emma L.; Rowland, Steven J. (2003). "Toxic Effects of Unresolved Complex Mixtures of Aromatic Hydrocarbons Accumulated by Mussels,Mytilus edulis, from Contaminated Field Sites". Environmental Science & Technology. American Chemical Society (ACS). 37 (21): 4825–4830. Bibcode:2003EnST...37.4825D. doi:10.1021/es021053e. ISSN   0013-936X. PMID   14620806.
  4. 1 2 3 4 5 6 Booth, Andy M.; Sutton, Paul A.; Lewis, C. Anthony; Lewis, Alastair C.; Scarlett, Alan; Chau, Wing; Widdows, John; Rowland, Steven J. (2007). "Unresolved Complex Mixtures of Aromatic Hydrocarbons: Thousands of Overlooked Persistent, Bioaccumulative, and Toxic Contaminants in Mussels". Environmental Science & Technology. American Chemical Society (ACS). 41 (2): 457–464. Bibcode:2007EnST...41..457B. doi:10.1021/es0615829. ISSN   0013-936X. PMID   17310707.
  5. 1 2 3 Scarlett, Alan; Galloway, Tamara S.; Rowland, Steven J. (2007-06-08). "Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediments" (PDF). Journal of Soils and Sediments. Springer Science and Business Media LLC. 7 (4): 200–206. Bibcode:2007JSoSe...7..200S. doi:10.1065/jss2007.06.232. ISSN   1439-0108. S2CID   97769416.
  6. 1 2 3 Scarlett, A., Rowland, S. J., Galloway, T. S., Lewis, A. C. & Booth, A. M. Chronic sublethal effects associated with branched alkylbenzenes bioaccumulated by mussels. Environmental Toxicology and Chemistry 27, 561–567 (2008).
  7. 1 2 3 4 Booth, A., Scarlett, A., Lewis, C. A., Belt, S. T. & Rowland, S. J. Unresolved Complex Mixtures (UCMs) of Aromatic Hydrocarbons: Branched Alkyl Indanes and Branched Alkyl Tetralins are present in UCMs and accumulated by and toxic to, the mussel Mytilus edulis. Environ Sci Technol. 42, 8122–8126 (2008).
  8. 1 2 3 Scarlett, A., Dissanayake, A., Rowland, S. J. & Galloway, T. S. Behavioral, physiological, and cellular responses following trophic transfer of toxic monoaromatic hydrocarbons. Environmental Toxicology and Chemistry 28, 381–387 (2009).
  9. 1 2 3 Tollefsen, K. E., Harman, C., Smith, A. & Thomas, K. V. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Marine Pollution Bulletin 54, 277–283 (2007).
  10. 1 2 Smith, E., Wraige, E., Donkin, P. & Rowland, S. Hydrocarbon humps in the marine environment: Synthesis, toxicity, and aqueous solubility of monoaromatic compounds. Environmental Toxicology and Chemistry 20, 2428–2432 (2001).
  11. Sutton, P. A., Lewis, C. A. & Rowland, S. J. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography. Organic Geochemistry 36, 963–970 (2005).
  12. Killops, S. D. & Killops, V. J. An introduction to organic geochemistry (Longman, Harlow, England, 1993).
  13. Peters, K. E., Walters, C. C. & Moldowan, J. M. The biomarker guide: Volume 1, Biomarkers and Isotopes in the Environment and Human History (Cambridge University Press, Cambridge, England, 2005).
  14. Fowler, S. W., Readman, J. W., Oregioni, B., Villeneuve, J. P. & McKay, K. Petroleum-Hydrocarbons and Trace-Metals in Nearshore Gulf Sediments and Biota before and after the 1991 War - an Assessment of Temporal and Spatial Trends. Marine Pollution Bulletin 27, 171–182 (1993).
  15. Colombo, J. C. et al. Oil spill in the Rio de la Plata estuary, Argentina: 1. Biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution 134, 277–289 (2005).
  16. Crowe, T. P., Smith, E. L., Donkin, P., Barnaby, D. L. & Rowland, S. J. Measurements of sublethal effects on individual organisms indicate community-level impacts of pollution. Journal of Applied Ecology 41, 114–123 (2004).
  17. Guerra-Garcia, J. M., Gonzalez-Vila, F. J. & Garcia-Gomez, J. C. Aliphatic hydrocarbon pollution and macrobenthic assemblages in Ceuta harbour: a multivariate approach. Marine Ecology Progress Series 263, 127–138 (2003).
  18. Reddy, C. M. et al. The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environmental Science & Technology 36, 4754–4760 (2002).
  19. McGovern, E. (Marine Institute Fisheries Research Centre, Dublin, 1999).
  20. Liu, Z. Y. & Phillips, J. B. Comprehensive 2-Dimensional Gas-Chromatography Using an on-Column Thermal Modulator Interface. Journal of Chromatographic Science 29, 227–231 (1991).
  21. Dallüge, J., Beens, J. & Brinkman, U. A. T. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. Journal of Chromatography A 1000, 69–108 (2003).
  22. Phillips, J. B. & Beens, J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. Journal of Chromatography A 856, 331–347 (1999).
  23. Adahchour, M., Beens, J., Vreuls, R. J. J. & Brinkman, U. A. T. Recent developments in comprehensive two-dimensional gas chromatography (GC x GC) III. Applications for petrochemicals and organohalogens. Trac-Trends in Analytical Chemistry 25, 726–741 (2006).
  24. Widdows, J. et al. Measurement of stress effects (scope for growth) and contaminant levels in mussels (Mytilus edulis) collected from the Irish Sea. Marine Environmental Research 53, 327–356 (2002).
  25. Culbertson, J. B. et al. Long-term biological effects of petroleum residues on fiddler crabs in salt marshes. Marine Pollution Bulletin 54, 955–962 (2007).
  26. "Petroleum and Environmental Geochemistry Group, School of Geography Earth and Environmental Sciences, University of Plymouth". Archived from the original on 2011-03-10. Retrieved 2011-02-08.
  27. Rowland, S. J. in SETAC North America 31st Annual Meeting, Portland, U.S.A., 7–11 November 2010 (2010).
  28. Rowland SJ, Scarlett AG, Jones D, West CE, Frank RA. Diamonds in the Rough: Identification of Individual Naphthenic Acids in Oil Sands Process Water. Environ Sci Technol: In Press, doi : 10.1021/es103721b.