Utah Oil Sands Joint Venture

Last updated

The Utah Oil Sands Joint Venture is a joint venture between Nevtah Capital Management, Inc., and Black Sands Energy Corp. to develop oil sands resources at the Uintah Basin in Utah.

Contents

History

Oil-sands extraction in Utah started in the 1960s when two extraction plants were constructed. Western Industries opened a strip-mine and built a pilot plant along the east side of the Whiterocks River and Major Oil Company opened a strip-mine and built a pilot plant on the west side off the Whiterocks River. In 2005, Nevtah Capital Management and Cassandra Energy (now: Black Sands Energy) formed a joint venture to develop Utah's oil sands and opened a pilot plant at the Asphalt Ridge lease location. [1] [2] The pilot plant became in operation in November 2005. [3]

Technology

The joint venture uses closed-loop solvent extraction process originally proven by X-TRAC Energy in Wyoming in 1998, with a full-scale production plant. [1] [4] Black Sands Energy has exclusive rights to a technology. [2]

The above-ground extraction process dissolute crushed, 1" minus oil sands materials through contact with a benign non-toxic solvent in an enclosed extractor vessel at temperatures up to 300  °F (149  °C ) at near-atmospheric pressures. As the material dissolves, it is passed to a wash chamber where any remaining oil is removed. [1] The oil-free sand is then desolventized with heat, which converts the liquid solvent to a gas, leaving dry solids suitable for mine backfill. The solvent-oil mixture is pumped into a critical unit for the removal of asphalt and oil from the solvent through heating and cooling. The recovered solvent is compressed back to a liquid, cooled and re-circulated to the extractor vessel in an endless loop. [2] The system consists of only few moving parts and it operates on a gravity principle. Since the process does not use water to recover the oil, energy requirements are minimal. [1]

Operations

The partnership holds the rights to 13 oil sands leases in Utah consisting of 11,535 acres (46.68 km2) containing over 650,000,000 bbl of recoverable oil. [5]

The joint venture owns a 200 bbl per day mobile pilot plant and preparing a 2,000 bbl per day commercial production unit. The production capacity is expected to increase up 50,000 bbl per day by the end of 2009. [1] The system has been improved to maintain processing levels at cold temperatures. A steam jacket has been installed which creates drier sand and keeps the pumps, plumbing and the extraction chamber warmer during standby time, minimizing warm-up time. System performance has improved with the installation of more powerful pumps and additional sensors for better indications of mass flow, temperature and material levels. The upgraded process control provides more precise data required in order to measure the system's performance. [3]

Partnership

The partnership is between Nevtah Capital Management, Inc., and Black Sands Energy Corp. The extraction technology is provided by development by Black Sands Energy and the financing is provided by Nevtah Capital Management. [1] On 12 January 2007, Nevtah Capital Management and Black Sands Energy announced a joint venture agreement with Korea Technology Industry. According to the agreement, Korea Technology Industry provides $19 million for the development of the Whiterocks Deposit, in exchange of 50% of net profit. The joint venture agreement is limited to 100 million barrels of oil. [6]

See also

Related Research Articles

Asphalt Form of petroleum, primarily used in road construction

Asphalt, also known as bitumen, is a sticky, black, highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used. The word is derived from the Ancient Greek ἄσφαλτος ásphaltos. The largest natural deposit of asphalt in the world, estimated to contain 10 million tons, is the Pitch Lake located in La Brea in southwest Trinidad, within the Siparia Regional Corporation.

Oil sands Type of unconventional oil deposit

Oil sands, tar sands, crude bitumen, or bituminous sands, are a type of unconventional petroleum deposit. Oil sands are either loose sands or partially consolidated sandstone containing a naturally occurring mixture of sand, clay, and water, soaked with bitumen, a dense and extremely viscous form of petroleum.

Athabasca oil sands Oil and bitumen deposits in Alberta, Canada

The Athabasca oil sands, also known as the Athabasca tar sands, are large deposits of bitumen or extremely heavy crude oil, located in northeastern Alberta, Canada – roughly centred on the boomtown of Fort McMurray. These oil sands, hosted primarily in the McMurray Formation, consist of a mixture of crude bitumen, silica sand, clay minerals, and water. The Athabasca deposit is the largest known reservoir of crude bitumen in the world and the largest of three major oil sands deposits in Alberta, along with the nearby Peace River and Cold Lake deposits.

Unconventional oil is petroleum produced or extracted using techniques other than the conventional method. Industry and governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil reserves. Unconventional oil and gas have already made a dent in international energy linkages by reducing US energy import dependency.

Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil can be used immediately as a fuel or upgraded to meet refinery feedstock specifications by adding hydrogen and removing impurities such as sulfur and nitrogen. The refined products can be used for the same purposes as those derived from crude oil.

Synthetic fuel Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from either syngas, a mixture of carbon monoxide and hydrogen, or a mixture of carbon dioxide and hydrogen. The syngas could be derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas. Alternatively a mixture of carbon dioxide from the atmosphere and green hydrogen could be used for an almost climate neutral production of synthetic fuels.

Shell in situ conversion process

The Shell in situ conversion process is an in situ shale oil extraction technology to convert kerogen in oil shale to shale oil. It is developed by the Shell Oil Company.

Karrick process

The Karrick process is a low-temperature carbonization (LTC) and pyrolysis process of carbonaceous materials. Although primarily meant for coal carbonization, it also could be used for processing of oil shale, lignite or any carbonaceous materials. These are heated at 450 °C (800 °F) to 700 °C (1,300 °F) in the absence of air to distill out synthetic fuels–unconventional oil and syngas. It could be used for a coal liquefaction as also for a semi-coke production. The process was the work of oil shale technologist Lewis Cass Karrick at the United States Bureau of Mines in the 1920s.

History of the petroleum industry in Canada (oil sands and heavy oil)

Canada's oil sands and heavy oil resources are among the world's great petroleum deposits. They include the vast oil sands of northern Alberta, and the heavy oil reservoirs that surround the small city of Lloydminster, which sits on the border between Alberta and Saskatchewan. The extent of these resources is well known, but better technologies to produce oil from them are still being developed.

Shale oil extraction Process for extracting oil from oil shale

Shale oil extraction is an industrial process for unconventional oil production. This process converts kerogen in oil shale into shale oil by pyrolysis, hydrogenation, or thermal dissolution. The resultant shale oil is used as fuel oil or upgraded to meet refinery feedstock specifications by adding hydrogen and removing sulfur and nitrogen impurities.

Environmental impact of the oil shale industry

Environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, and water and air pollution caused by the extraction and processing of oil shale. Surface mining of oil shale deposits causes the usual environmental impacts of open-pit mining. In addition, the combustion and thermal processing generate waste material, which must be disposed of, and harmful atmospheric emissions, including carbon dioxide, a major greenhouse gas. Experimental in-situ conversion processes and carbon capture and storage technologies may reduce some of these concerns in future, but may raise others, such as the pollution of groundwater.

History of the oil shale industry Timeline of the production of oil shale

The history of the oil shale industry started in ancient times. The modern industrial use of oil shale for oil extraction dates to the mid-19th century and started growing just before World War I because of the mass production of automobiles and trucks and the supposed shortage of gasoline for transportation needs. Between the World Wars oil shale projects were begun in several countries.

Red Leaf Resources, Inc, is an oil-shale company based in Salt Lake City, Utah, United States. It is a developer of the shale oil extraction technology EcoShale In-Capsule Process. The company is affiliated with Questerre Energy.

Chattanooga Corporation is an American developer of technology for unconventional oil, particularly for tar sands and shale oil extraction.

Mountain West Energy, LLC is an American unconventional oil recovery technology research and development company based in Orem, Utah. It is a developer of the In-situ Vapor Extraction Technology, an in-situ shale oil extraction technology. The company owns 880 acres (3.6 km2) oil shale leases in the Uintah Basin, Uintah County, Utah.

The Alberta Taciuk process is an above-ground dry thermal retorting technology for extracting oil from oil sands, oil shale and other organics-bearing materials, including oil contaminated soils, sludges and wastes. The technology is named after its inventor William Taciuk and the Alberta Oil Sands Technology and Research Authority.

Canadian petroleum companies

Although there are numerous oil companies operating in Canada, as of 2009, the majority of production, refining and marketing was done by fewer than 20 of them. According to the 2013 edition of Forbes Global 2000, canoils.com and any other list that emphasizes market capitalization and revenue when sizing up companies, as of March 31, 2014 these are the largest Canada-based oil and gas companies.

The Union process was an above ground shale oil extraction technology for production of shale oil, a type of synthetic crude oil. The process used a vertical retort where heating causes decomposition of oil shale into shale oil, oil shale gas and spent residue. The particularity of this process is that oil shale in the retort moves from the bottom upward to the top, countercurrent to the descending hot gases, by a mechanism known as a rock pump. The process technology was invented by the American oil company Unocal Corporation in late 1940s and was developed through several decades. The largest oil shale retort ever built was the Union B type retort.

Utah oil sands

In the United States a large supply of oil sands are found in Eastern Utah. These deposits of bitumen or heavy crude oil have the ability to generate about 12 to 19 billion barrels from a number of prominent sites.

Bitumen froth treatment is a process used in the Athabasca oil sands (AOS) bitumen recovery operations to remove fine inorganics—water and mineral particles—from bitumen froth, by diluting the bitumen with a light hydrocarbon solvent—either naphthenic or paraffinic—to reduce the viscosity of the froth and to remove contaminants that were not removed in previous water-based gravity recovery phases. Bitumen with a high viscosity or with too many contaminants, is not suitable for transporting through pipelines or refining. The original and conventional naphthenic froth treatment (NFT) uses a naphtha solvent with the addition of chemicals. Paraffinic Solvent Froth Treatment (PSFT), which was first used commercially in the Albian Sands in the early 2000s, results in a cleaner bitumen with lower levels of contaminates, such as water and mineral solids. Following froth treatments, bitumen can be further upgraded using "heat to produce synthetic crude oil by means of a coker unit."

References

  1. 1 2 3 4 5 6 "Secure Fuels from Domestic Resources: The Continuing Evolution of America's Oil Shale and Tar Sands Industries" (PDF). United States Department of Energy. 2007. pp. 1–68. Archived from the original (PDF) on 2009-02-25. Retrieved 2009-02-12.
  2. 1 2 3 "Nevtah/Cassandra Oil Sands Joint Venture Pilot Plant Mobilized in Utah". Market Wire. 2005-10-11. Retrieved 2009-02-12.
  3. 1 2 "Nevtah Relocates Pilot Scale Plant at Asphalt Ridge, Utah Tar Sands & Commissions Construction of Two Larger Scale Systems". Market Wire. 2006-03-09. Retrieved 2009-02-12.
  4. "Closed-loop extraction of hydrocarbons and bitumen from oil-bearing soils" (PDF). United States Department of Energy. Archived from the original (PDF) on 2006-08-21. Retrieved 2009-02-12.
  5. "Nevtah & Black Sands Energy Agree to Share Exchange as Utah Tar/Oil Sands Project Prepares for Production". Market Wire. 2006-05-01. Retrieved 2009-02-12.
  6. "Nevtah, Black Sands Energy Announce Utah Oil Sands Development Agreement with Korea Technology Industry Co". Market Wire. 2007-01-12. Retrieved 2009-02-12.