Vapor recovery

Last updated
Gas nozzle with vapor recovery Vapor Recovery Device.JPG
Gas nozzle with vapor recovery

Vapor (or vapour) recovery is the process of collecting the vapors of gasoline and other fuels, so that they do not escape into the atmosphere. This is often done (and sometimes required by law) at filling stations, to reduce noxious and potentially explosive fumes and pollution.

Contents

The negative pressure created by a vacuum pump typically located in the fuel dispenser, combined with the pressure in the car's fuel tank caused by the inflow, is usually used to pull in the vapors. They are drawn in through holes in the side of the nozzle and travel along a return path through another hose.

In 1975 the Vapor Recovery Gasoline Nozzle was an improvement on the idea of the original gasoline nozzle delivery system.

The improved idea was the brain child of Mark Maine of San Diego, California, where Mark was a gas station attendant at a corporate owned and operated Chevron U.S.A. service station. The story is, after watching the tanker truck driver deliver gasoline to the station using two hoses, one to deliver the gasoline from the tanker, and the other hose to recover the escaping gasoline vapors back into the emptying tanker. Mark talked with the driver to understand why the two hose system was used, and also why it was not implemented on the standard delivery nozzle, allowing vapors to escape from the vehicle gas tank. After the tanker driver left, Mark drew an idea for a Vapor Recovery Gasoline Nozzle and submitted it to the Chevron Station Management as an employee suggestion.

Mark was included in the design and development as the original Vapor recovery gasoline nozzle, which was manufactured and delivered by Huddleson. Mark was also promoted from the Chevron Service Station to an executive position based out of the Corporate in La Habra, California. Mark was appointed as the Vapor Recovery Gasoline Nozzle executive for the 2 year implementation program, his duties were to train and oversee the installation and maintenance of 124 Chevron Service Stations within San Diego County.

Chevron USA lobbied California Law Makers, and the law was changed to require the new improved Vapor Recovery Gasoline Nozzle delivery system state wide and eventually such followed across the USA.

In Australia, vapor recovery has become mandatory in major urban areas. There are two categories - VR1 and VR2. VR1 must be installed at fuel stations that pump less than 500,000 litres annually, VR2 must be installed for larger amounts, or as designated by various EPA bodies.

Other industries

Vapor recovery is also used in the chemical process industry to remove and recover vapors from storage tanks. The vapors are usually either environmentally hazardous, or valuable. The process consists of a closed venting system from the storage tank ullage space to a vapor recovery unit which will recover the vapors for return to the process or destroy them, usually by oxidation.

Vapor recovery towers are also used in the oil and gas industry to provide flash gas recovery at near atmospheric pressure without the chance of oxygen ingress at the top of the storage tanks. The ability to create the vapor flash inside the tower often reduces storage tank emissions to less than six tons per year, exempting the tank battery from Quad O reporting requirements. [1] [ non-primary source needed ]

The identifiable benefits from an organizational stand point behind vapor recovery is that it helps to make the industry more sustainable and creates a pipeline for pumping exhausts back into production. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Filling station</span> Facility which sells gasoline and diesel

A filling station is a facility that sells fuel and engine lubricants for motor vehicles. The most common fuels sold in the 2010s were gasoline and diesel fuel.

An inerting system decreases the probability of combustion of flammable materials stored in a confined space. The most common such system is a fuel tank containing a combustible liquid, such as gasoline, diesel fuel, aviation fuel, jet fuel, or rocket propellant. After being fully filled, and during use, there is a space above the fuel, called the ullage, that contains evaporated fuel mixed with air, which contains the oxygen necessary for combustion. Under the right conditions this mixture can ignite. An inerting system replaces the air with a gas that cannot support combustion, such as nitrogen.

<span class="mw-page-title-main">Aviation fuel</span> Fuel used to power aircraft

Aviation fuels are petroleum-based fuels, or petroleum and synthetic fuel blends, used to power aircraft. They have more stringent requirements than fuels used for ground use, such as heating and road transport, and contain additives to enhance or maintain properties important to fuel performance or handling. They are kerosene-based for gas turbine-powered aircraft. Piston-engined aircraft use leaded gasoline and those with diesel engines may use jet fuel (kerosene). By 2012, all aircraft operated by the U.S. Air Force had been certified to use a 50-50 blend of kerosene and synthetic fuel derived from coal or natural gas as a way of stabilizing the cost of fuel.

<span class="mw-page-title-main">Fuel tank</span> Safe container for flammable fluids, e.g., for a vehicle or oil heater

A fuel tank is a safe container for flammable fluids, often gasoline or diesel fuel. Though any storage tank for fuel may be so called, the term is typically applied to part of an engine system in which the fuel is stored and propelled or released into an engine. Fuel tanks range in size and complexity from the small plastic tank of a butane lighter to the multi-chambered cryogenic Space Shuttle external tank.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

<span class="mw-page-title-main">Autogas</span> Liquefied petroleum gas when it is used as a fuel in internal combustion engines

Autogas or LPG is liquefied petroleum gas (LPG) used as a fuel in internal combustion engines in vehicles as well as in stationary applications such as generators. It is a mixture of propane and butane.

<span class="mw-page-title-main">Oil terminal</span> Industrial facility for the storage of oil, petroleum and petrochemical products

An oil terminal is an industrial facility for the storage of oil, petroleum and petrochemical products, and from which these products are transported to end users or other storage facilities. An oil terminal typically has a variety of above or below ground tankage; facilities for inter-tank transfer; pumping facilities; loading gantries for filling road tankers or barges; ship loading/unloading equipment at marine terminals; and pipeline connections.

<i>Ralph J. Scott</i> (fireboat) Historic LA Fire Department vessel

Ralph J. Scott, also formerly known as Fireboat #2, is a 100-foot (30 m) fireboat that was attached to the Los Angeles Fire Department serving the Port of Los Angeles. She was retired in 2003 after 78 years and replaced by Warner L. Lawrence. Ralph J. Scott is undergoing restoration near the Los Angeles Maritime Museum in San Pedro. On 30 June 1989, she was listed as a National Historic Landmark. She is currently located at the Los Angeles Fire Department, Fire Station 112, at 444 South Harbor Blvd, Berth 86, San Pedro, California.

An oil production plant is a facility which processes production fluids from oil wells in order to separate out key components and prepare them for export. Typical oil well production fluids are a mixture of oil, gas and produced water. An oil production plant is distinct from an oil depot, which does not have processing facilities.

An onboardrefueling vapor recovery system (ORVR) is a vehicle fuel vapor emission control system that captures volatile organic compounds (VOC, potentially harmful vapors) during refueling. There are two types of vehicle fuel vapor emission control systems: the ORVR, and the Stage II vapor recovery system. Without either of these two systems, fuel vapors trapped inside gas tanks would be released into the atmosphere, each time refueling of the vehicle occurred. However, an ORVR system is able to retain those emissions, delivering them to the vehicle's activated carbon-filled canister and then to dispose of those vapors by adding them to the engine's inlet manifold and the stream of fuel supplying the engine, during normal operation. The goal behind implementing the ORVR system throughout the U.S. is to eventually make the Stage II systems obsolete.

Fuel-management systems are used to maintain, control and monitor fuel consumption and stock in any type of industry that uses transport, including rail, road, water and air, as a means of business. Fuel-management systems are designed to effectively measure and manage the use of fuel within the transportation and construction industries. They are typically used for fleets of vehicles, including railway vehicles and aircraft, as well as any vehicle that requires fuel to operate. They employ various methods and technologies to monitor and track fuel inventories, fuel purchases and fuel dispensed. This information can be then stored in computerized systems and reports generated with data to inform management practices. Online fuel management is provided through the use of web portals to provide detailed fueling data, usually vis a vis the back end of an automated fuel-management system. This enables consumption control, cost analysis and tax accounting for fuel purchases.

Onshore, when used in relation to hydrocarbons, refers to an oil, natural gas or condensate field that is under the land or to activities or operations carried out in relation to such a field.

<span class="mw-page-title-main">LNG carrier</span> Tank ship transporting liquefied natural gas

An LNG carrier is a tank ship designed for transporting liquefied natural gas (LNG).

<span class="mw-page-title-main">Petroleum transport</span>

Petroleum transport is the transportation of petroleum and derivatives such as gasoline (petrol). Petroleum products are transported via rail cars, trucks, tanker vessels, and pipeline networks. The method used to move the petroleum products depends on the volume that is being moved and its destination. Even the modes of transportation on land such as pipeline or rail have their own strengths and weaknesses. One of the key differences are the costs associated with transporting petroleum though pipeline or rail. The biggest problems with moving petroleum products are pollution related and the chance of spillage. Petroleum oil is very hard to clean up and is very toxic to living animals and their surroundings.

Oil tanker Ship that carries petroleum

An oil tanker, also known as a petroleum tanker, is a ship designed for the bulk transport of oil or its products. There are two basic types of oil tankers: crude tankers and product tankers. Crude tankers move large quantities of unrefined crude oil from its point of extraction to refineries. Product tankers, generally much smaller, are designed to move refined products from refineries to points near consuming markets.

<span class="mw-page-title-main">Gasoline pump</span> Machine at a filling station that is used to pump fuels

A gasoline pump or fuel dispenser is a machine at a filling station that is used to pump gasoline (petrol), diesel, or other types of liquid fuel into vehicles. Gasoline pumps are also known as bowsers or petrol bowsers, petrol pumps, or gas pumps.

<span class="mw-page-title-main">Liquefied natural gas terminal</span> Facility for processing shipments of the fossil fuel

A liquefied natural gas terminal is a facility for managing the import and/or export of liquefied natural gas (LNG). It comprises equipment for loading and unloading of LNG cargo to/from ocean-going tankers, for transfer across the site, liquefaction, re-gasification, processing, storage, pumping, compression, and metering of LNG. LNG as a liquid is the most efficient way to transport natural gas over long distances, usually by sea.

<span class="mw-page-title-main">Flash-gas (petroleum)</span>

In an oil and gas production, flash-gas is a spontaneous vapor that is produced from the heating or depressurization of the extracted oil mixture during different phases of production. Flash evaporation, or flashing, is the process of volatile components suddenly vaporizing from their liquid state. This often happens during the transportation of petroleum products through pipelines and into vessels, such as when the stream from a common separation unit flows into an on-site atmospheric storage tank. Vessels that are used to intentionally “flash” a mixture of gas and saturated liquids are aptly named "flash drums." A type of vapor-liquid separator. A venting apparatus is used in these vessels to prevent damage due to increasing pressure, extreme cases of this are referred to as boiling liquid expanding vapor explosion (BLEVE).

The Teesside oil terminal is a major crude oil reception, processing, storage and export facility at Seal Sands, Middlesbrough. It receives and processes crude oil delivered by the subsea NORPIPE pipeline from the Norwegian Ekofisk field and the UK Fulmar and J-Block fields. The terminal includes facilities for exporting stabilised crude oil and liquefied petroleum gases (LPG) by tanker and pipeline.

References

  1. "Vapor Recovery Tower (VRT)". HY-BON. Retrieved September 23, 2020.
  2. Armstrong, Cameron (2024-02-29). "The Immense Importance of Vapor Recovery in Oil & Gas". Flogistix. Retrieved 2024-04-30.