Vertex-transitive graph

Last updated
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive,t  2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

In the mathematical field of graph theory, a vertex-transitive graph is a graph G in which, given any two vertices v1 and v2 of G, there is some automorphism

Contents

such that

In other words, a graph is vertex-transitive if its automorphism group acts transitively on its vertices. [1] A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical.

Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph).

Finite examples

The edges of the truncated tetrahedron form a vertex-transitive graph (also a Cayley graph) which is not symmetric. Tuncated tetrahedral graph.png
The edges of the truncated tetrahedron form a vertex-transitive graph (also a Cayley graph) which is not symmetric.

Finite vertex-transitive graphs include the symmetric graphs (such as the Petersen graph, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also vertex-transitive, as are the vertices and edges of the Archimedean solids (though only two of these are symmetric). Potočnik, Spiga and Verret have constructed a census of all connected cubic vertex-transitive graphs on at most 1280 vertices. [2]

Although every Cayley graph is vertex-transitive, there exist other vertex-transitive graphs that are not Cayley graphs. The most famous example is the Petersen graph, but others can be constructed including the line graphs of edge-transitive non-bipartite graphs with odd vertex degrees. [3]

Properties

The edge-connectivity of a connected vertex-transitive graph is equal to the degree d, while the vertex-connectivity will be at least 2(d +1)/3. [1] If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to d. [4]

Infinite examples

Infinite vertex-transitive graphs include:

Two countable vertex-transitive graphs are called quasi-isometric if the ratio of their distance functions is bounded from below and from above. A well known conjecture stated that every infinite vertex-transitive graph is quasi-isometric to a Cayley graph. A counterexample was proposed by Diestel and Leader in 2001. [5] In 2005, Eskin, Fisher, and Whyte confirmed the counterexample. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In the mathematical field of graph theory, an edge-transitive graph is a graph G such that, given any two edges e1 and e2 of G, there is an automorphism of G that maps e1 to e2.

<span class="mw-page-title-main">Cubic graph</span> Graph with all vertices of degree 3

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

<span class="mw-page-title-main">Symmetric graph</span> Graph in which all ordered pairs of linked nodes are automorphic

In the mathematical field of graph theory, a graph G is symmetric if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

<span class="mw-page-title-main">Connectivity (graph theory)</span> Basic concept of graph theory

In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network.

<span class="mw-page-title-main">Semi-symmetric graph</span> Graph that is edge-transitive and regular but not vertex-transitive

In the mathematical field of graph theory, a semi-symmetric graph is an undirected graph that is edge-transitive and regular, but not vertex-transitive. In other words, a graph is semi-symmetric if each vertex has the same number of incident edges, and there is a symmetry taking any of the graph's edges to any other of its edges, but there is some pair of vertices such that no symmetry maps the first into the second.

In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says:

<span class="mw-page-title-main">Coxeter graph</span> Type of graph

In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter.

<span class="mw-page-title-main">Foster graph</span> Bipartite 3-regular graph with 90 vertices and 135 edges

In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges.

In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity.

<span class="mw-page-title-main">Folkman graph</span> Bipartite 4-regular graph with 20 nodes and 40 edges

In the mathematical field of graph theory, the Folkman graph is a 4-regular graph with 20 vertices and 40 edges. It is a regular bipartite graph with symmetries taking every edge to every other edge, but the two sides of its bipartition are not symmetric with each other, making it the smallest possible semi-symmetric graph. It is named after Jon Folkman, who constructed it for this property in 1967.

<span class="mw-page-title-main">Biggs–Smith graph</span> Cubic distance-regular graph with 102 nodes and 153 edges

In the mathematical field of graph theory, the Biggs–Smith graph is a 3-regular graph with 102 vertices and 153 edges.

<span class="mw-page-title-main">Dyck graph</span>

In the mathematical field of graph theory, the Dyck graph is a 3-regular graph with 32 vertices and 48 edges, named after Walther von Dyck.

<span class="mw-page-title-main">Nauru graph</span> 24-vertex symmetric bipartite cubic graph

In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.

<span class="mw-page-title-main">F26A graph</span>

In the mathematical field of graph theory, the F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges.

<span class="mw-page-title-main">Ljubljana graph</span> Undirected bipartite graph with 112 vertices and 168 edges

In the mathematical field of graph theory, the Ljubljana graph is an undirected bipartite graph with 112 vertices and 168 edges, rediscovered in 2002 and named after Ljubljana.

<span class="mw-page-title-main">Tutte 12-cage</span>

In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges. It is named after W. T. Tutte.

In the mathematics of infinite graphs, an end of a graph represents, intuitively, a direction in which the graph extends to infinity. Ends may be formalized mathematically as equivalence classes of infinite paths, as havens describing strategies for pursuit–evasion games on the graph, or as topological ends of topological spaces associated with the graph.

<span class="mw-page-title-main">Zero-symmetric graph</span>

In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge.

<span class="mw-page-title-main">110-vertex Iofinova–Ivanov graph</span>

The 110-vertex Iofinova–Ivanov graph is, in graph theory, a semi-symmetric cubic graph with 110 vertices and 165 edges.

References

  1. 1 2 Godsil, Chris; Royle, Gordon (2013) [2001], Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207, Springer, ISBN   978-1-4613-0163-9 .
  2. Potočnik P., Spiga P. & Verret G. (2013), "Cubic vertex-transitive graphs on up to 1280 vertices", Journal of Symbolic Computation, 50: 465–477, arXiv: 1201.5317 , doi:10.1016/j.jsc.2012.09.002, S2CID   26705221 .
  3. Lauri, Josef; Scapellato, Raffaele (2003), Topics in graph automorphisms and reconstruction, London Mathematical Society Student Texts, vol. 54, Cambridge University Press, p. 44, ISBN   0-521-82151-7, MR   1971819 . Lauri and Scapelleto credit this construction to Mark Watkins.
  4. Babai, L. (1996), Technical Report TR-94-10, University of Chicago, archived from the original on 2010-06-11
  5. Diestel, Reinhard; Leader, Imre (2001), "A conjecture concerning a limit of non-Cayley graphs" (PDF), Journal of Algebraic Combinatorics, 14 (1): 17–25, doi: 10.1023/A:1011257718029 , S2CID   10927964 .
  6. Eskin, Alex; Fisher, David; Whyte, Kevin (2005). "Quasi-isometries and rigidity of solvable groups". arXiv: math.GR/0511647 ..