Very short patch repair

Last updated
Vsr
PDB 1cw0 EBI.jpg
Crystal structure of a very short patch repair (VSR) endonuclease in complex with duplex DNA
Identifiers
SymbolVsr
Pfam PF03852
Pfam clan CL0236
InterPro IPR004603
SCOP2 1vsr / SCOPe / SUPFAM

Very short patch (VSP) repair is a DNA repair system that removes GT mismatches created by the deamination of 5-methylcytosine to thymine. This system exists because the glycosylases which normally target deaminated bases cannot target thymine (it being one of the regular four bases in DNA).

Contents

The components of the system are MutS, which binds to the GT mismatch, the VSR endonuclease, which cuts the DNA, and MutL, which recruits the UvrD helicase.

VSR (very short patch repair) endonucleases occur in a variety of bacteria. They work by cutting, or rather, making a nick in DNA if the base pair is mutated or damaged.

Function

Mutations in the base pairs of DNA can be harmful to the organism. In particular, C to T mutations occur quite often due to methylation of cytosine. Hence, the VSR endonucleases have a function to protect the cell from damage caused by mutated DNA.

Mechanism

VSR recognises a TG mismatched base pair, generated after spontaneous deamination of methylated cytosines, and it creates a nick on a single strand by cleaving the phosphate backbone on the 5' side of the thymine. [1] Then DNA Polymerase I removes the T and some nucleotides on the 3' strand and then resynthesises the patch. [2]

Additionally, GT mismatches can lead to C-to-T transition mutations if not repaired. VSR repairs the mismatches in favour of the G-containing strand. In Escherichia coli, this endonuclease nicks double-stranded DNA within the sequence CT(AT)GN or NT(AT)GG next to the thymidine residue, which is mismatched to 2'-deoxyguanosine. [3] The incision is mismatch-dependent and strand specific.

Structure

The structure of VSR is similar to the core structure of restriction endonucleases, which have a 3-layer alpha/beta/alpha topology. [4]

VSR has three aromatic residues (Phe67, Trp68 and Trp86), which intercalate into the major groove, bending the DNA and separating the two strands. The N-terminal domain stabilizes the interaction between the protein and the cleaved product, thereby protecting the nick from DNA ligase until the arrival of DNA Polymerase I.

Related Research Articles

Deamination is the removal of an amino group from a molecule. Enzymes that catalyse this reaction are called deaminases.

Nuclease

A nuclease is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously affect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.

dnaQ is the gene encoding the ε subunit of DNA polymerase III in Escherichia coli. The ε subunit is one of three core proteins in the DNA polymerase complex. It functions as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. dnaQ may also be referred to as mutD.

Okazaki fragments

Okazaki fragments are short sequences of DNA nucleotides which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. They were discovered in the 1960s by the Japanese molecular biologists Reiji and Tsuneko Okazaki, along with the help of some of their colleagues.

DNA repair Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.

Molecular lesion

A molecular lesion, or a point lesion, is damage to the structure of a biological molecule such as DNA, RNA, or protein. This damage may result in the reduction or absence of normal function, and in rare cases the gain of a new function. Lesions in DNA may consist of breaks or other changes in chemical structure of the helix, ultimately preventing transcription. Meanwhile, lesions in proteins consist of both broken bonds and improper folding of the amino acid chain. While many nucleic acid lesions are general across DNA and RNA, some are specific to one, such as thymine dimers being found exclusively in DNA. Several cellular repair mechanisms exist, ranging from global to specific, in order to prevent lasting damage resulting from lesions.

DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first step of this process. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site. This is accomplished by flipping the damaged base out of the double helix followed by cleavage of the N-glycosidic bond.

AP site Biochemical site of damaged DNA or RNA

In biochemistry and molecular genetics, an AP site, also known as an abasic site, is a location in DNA that has neither a purine nor a pyrimidine base, either spontaneously or due to DNA damage. It has been estimated that under physiological conditions 10,000 apurinic sites and 500 apyrimidinic may be generated in a cell daily.

DNA mismatch repair

DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.

Base excision repair DNA repair process

Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication. BER is initiated by DNA glycosylases, which recognize and remove specific damaged or inappropriate bases, forming AP sites. These are then cleaved by an AP endonuclease. The resulting single-strand break can then be processed by either short-patch or long-patch BER.

Activation-induced cytidine deaminase Creates mutations in DNA[6] by deamination of cytosine base, which turns it into uracil (which is recognized as a thymine).

Activation-induced cytidine deaminase, also known as AICDA, AID and single-stranded DNA cytosine deaminase, is a 24 kDa enzyme which in humans is encoded by the AICDA gene. It creates mutations in DNA by deamination of cytosine base, which turns it into uracil. In other words, it changes a C:G base pair into a U:G mismatch. The cell's DNA replication machinery recognizes the U as a T, and hence C:G is converted to a T:A base pair. During germinal center development of B lymphocytes, AID also generates other types of mutations, such as C:G to A:T. The mechanism by which these other mutations are created is not well understood. It is a member of the APOBEC family.

A nick is a discontinuity in a double stranded DNA molecule where there is no phosphodiester bond between adjacent nucleotides of one strand typically through damage or enzyme action. Nicks allow DNA strands to untwist during replication, and are also thought to play a role in the DNA mismatch repair mechanisms that fix errors on both the leading and lagging daughter strands.

MUTYH

MUTYH is a human gene that encodes a DNA glycosylase, MUTYH glycosylase. It is involved in oxidative DNA damage repair and is part of the base excision repair pathway. The enzyme excises adenine bases from the DNA backbone at sites where adenine is inappropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine, a common form of oxidative DNA damage.

UvrABC endonuclease is a multienzyme complex in bacteria involved in DNA repair by nucleotide excision repair, and it is, therefore, sometimes called an excinuclease. This UvrABC repair process, sometimes called the short-patch process, involves the removal of twelve nucleotides where a genetic mutation has occurred followed by a DNA polymerase, replacing these aberrant nucleotides with the correct nucleotides and completing the DNA repair. The subunits for this enzyme are encoded in the uvrA, uvrB, and uvrC genes. This enzyme complex is able to repair many different types of damage, including cyclobutyl dimer formation.

DNA adenine methylase Prokaryotic enzyme

DNA adenine methylase, (Dam methylase) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction

Uracil-DNA glycosylase Prevent mutagenesis by eliminating uracil from DNA molecules by cleaving the N-glycosylic bond and initiating the base-excision repair (BER) pathway.

Uracil-DNA glycosylase, also known as UNG or UDG. Its most important function is to prevent mutagenesis by eliminating uracil from DNA molecules by cleaving the N-glycosidic bond and initiating the base-excision repair (BER) pathway.

NEIL1

Endonuclease VIII-like 1 is an enzyme that in humans is encoded by the NEIL1 gene.

FPG IleRS zinc finger

The FPG IleRS zinc finger domain represents a zinc finger domain found at the C-terminal in both DNA glycosylase/AP lyase enzymes and in isoleucyl tRNA synthetase. In these two types of enzymes, the C-terminal domain forms a zinc finger.

MutS-1

MutS is a mismatch DNA repair protein, originally described in Escherichia coli.

Claire Cupples Canadian microbiologist

Claire Georgina Cupples is a Canadian microbiologist. She is a Professor in the Department of Molecular Biology and Biochemistry at Simon Fraser University. Her research focuses on the causes, consequences and prevention of mutations in microbes and in humans.

References

  1. Tsutakawa SE, Jingami H, Morikawa K (December 1999). "Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex". Cell. 99 (6): 615–23. doi: 10.1016/s0092-8674(00)81550-0 . PMID   10612397. S2CID   17458432.
  2. Polosina YY, Cupples CG (2009). "Changes in the conformation of the Vsr endonuclease amino-terminal domain accompany DNA cleavage". J Biochem. 146 (4): 523–6. doi:10.1093/jb/mvp095. PMID   19556224.
  3. Bhagwat AS, Lieb M (June 2002). "Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli". Mol. Microbiol. 44 (6): 1421–8. doi: 10.1046/j.1365-2958.2002.02989.x . PMID   12067333. S2CID   44319240.
  4. Bunting KA, Roe SM, Headley A, Brown T, Savva R, Pearl LH (March 2003). "Crystal structure of the Escherichia coli dcm very-short-patch DNA repair endonuclease bound to its reaction product-site in a DNA superhelix". Nucleic Acids Res. 31 (6): 1633–9. doi:10.1093/nar/gkg273. PMC   152875 . PMID   12626704.
This article incorporates text from the public domain Pfam and InterPro: IPR004603