Viking (satellite)

Last updated
Viking
Mission typeEarth observation
COSPAR ID 1986-019B OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 16614
Mission duration1 year, 2 months and 20 days
Start of mission
Launch date22 February 1986 (1986-02-22)
Rocket Ariane 1
Launch site Guiana Space Centre
Entered service22 February 1986
Orbital parameters
Reference system Geocentric
Regime Polar
Semi-major axis 13,550 km (8,420 mi)
Eccentricity 0.0001538
Perigee altitude 801 km (498 mi)
Apogee altitude 13,538 km (8,412 mi)
Inclination 98.7863°
Period 261.56 minutes
Epoch 15 April 2019, 18:22:45 [1]
 
The Viking satellite is mounted on top of the Ariane adapter. Viking Satellite on Ariane Adapter.jpg
The Viking satellite is mounted on top of the Ariane adapter.

Viking was Sweden's first satellite. It was launched on an Ariane 1 rocket as a piggyback payload together with the French satellite SPOT 1, on February 22, 1986. [2] Operations ended on May 12, 1987. Viking was used to explore plasma processes in the magnetosphere and the ionosphere. [3]

Contents

Spacecraft

Space was limited underneath the SPOT 1 satellite, and Viking had to be quite sturdy in order to withstand the stress of launch. The basic shape of the Swedish satellite was a flat octagonal disc, 0.5 metres thick and 1.9 metres across. [4] The mechanical interface of the payload adapter from the Ariane rocket was duplicated on top of Viking. This enabled it to be added to the launch with a minimum of redesign of the SPOT satellite. The satellite was developed by SAAB Space with Boeing Aerospace as a major subcontractor.

The launch sequence was designed to enable Viking to separate and fire its own rocket engine to be sent into its proper polar orbit after separation of the SPOT 1 satellite from the adapter interface.

Mission

The satellite hosted five sensors and/or experiments: Electric Fields (V1); Magnetic Fields (V2); Hot Plasma Particles (V3); Waves (V4), and an Auroral Imager (V5). [4]

Once in orbit, 4 wire segments of 40 metre length each were spooled out in a radial direction from the edge of the spinning satellite disc. Also, 2 stiff rods of 4 metre length were extended in the axial direction. A sensor pod was stationed at the end of each of these, forming three orthogonal pairs. Together they could measure the electric field of the Earth in all three dimensions. Stiff booms were also extended for other types of sensors and antennas. In addition, the satellite included two 4 meter long axial booms that hosted the V1 and V4 experiments. Two short radial booms hosted the V2 and V4 sensors. [4]

The mission produced a large amount of extremely useful scientific data, and was deemed a great success. An initial discussion of what scientists learned from these measurements, which included "global distribution of magnetosphere-ionosphere interaction; auroral morphology and substorm dynamics; heating and expulsion of ionospheric plasma into the magnetosphere; field aligned acceleration into the ionosphere; and electron and ion wave generation" can be found in the article "Scientific results from the Swedish Viking satellite", 1988 Swedish Inst. of Space Physics, Kiruna. [5]

Post mission

After the scientific mission ended, both Viking and the upper stage of the rocket used to launch the satellite became derelict objects that would continue to orbit Earth for many years. As of January 2023, both objects remain in orbit. [6]

Related Research Articles

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Esrange</span> Spaceport in northern Sweden

Esrange Space Center is a rocket range and research centre located about 40 kilometers east of the town of Kiruna in northern Sweden. It is a base for scientific research with high-altitude balloons, investigation of the aurora borealis, sounding rocket launches, and satellite tracking, among other things. Located 200 km north of the Arctic Circle and surrounded by a vast wilderness, its geographic location is ideal for many of these purposes.

The Swedish National Space Agency is a Government agency in Sweden operating under the Swedish Ministry of Education and Science. SNSA operates as a key component of the Swedish space programme, which is mostly carried out through international cooperation, and has included a sequence of satellite missions, both national ones and in cooperation with other nations. Furthermore, the agency distributes government grants to research and development, initiates research and development in space and remote sensing, and acts as the Swedish contact in international cooperative efforts.

<span class="mw-page-title-main">Swedish Institute of Space Physics</span> Swedish government agency

The Swedish Institute of Space Physics is a Swedish government agency. The institute's primary task is to carry out basic research, education and associated observatory activities in space physics, space technology and atmospheric physics.

The Max Planck Institute for Extraterrestrial Physics is part of the Max Planck Society, located in Garching, near Munich, Germany. In 1991 the Max Planck Institute for Physics and Astrophysics split up into the Max Planck Institute for Extraterrestrial Physics, the Max Planck Institute for Physics and the Max Planck Institute for Astrophysics. The Max Planck Institute for Extraterrestrial Physics was founded as sub-institute in 1963. The scientific activities of the institute are mostly devoted to astrophysics with telescopes orbiting in space. A large amount of the resources are spent for studying black holes in the Milky Way Galaxy and in the remote universe.

<span class="mw-page-title-main">European Space Research Organisation</span> International organisation (1964-75); predecessor to the European Space Agency

The European Space Research Organisation (ESRO) was an international organisation founded by 10 European nations with the intention of jointly pursuing scientific research in space. It was founded in 1964. As an organisation ESRO was based on a previously existing international scientific institution, CERN. The ESRO convention, the organisations founding document outlines it as an entity exclusively devoted to scientific pursuits. This was the case for most of its lifetime but in the final years before the formation of ESA, the European Space Agency, ESRO began a programme in the field of telecommunications. Consequently, ESA is not a mainly pure science focused entity but concentrates on telecommunications, earth observation and other application motivated activities. ESRO was merged with ELDO in 1975 to form the European Space Agency.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Birkeland current</span> Currents flowing along geomagnetic field lines

A Birkeland current is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere. The strength of the Birkeland currents changes with activity in the magnetosphere. Small scale variations in the upward current sheets accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis. In the high latitude ionosphere, the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.

<span class="mw-page-title-main">Freja (satellite)</span> Swedish artificial satellite

FREJA was a Swedish satellite developed by the Swedish Space Corporation on behalf of the Swedish National Space Board. It was piggyback launched on a Long March 2C launch vehicle from Jiuquan Satellite Launch Center in China on October 6, 1992. The satellite's total cost was 19 million U.S. dollars, excluding the costs of experiments.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

<span class="mw-page-title-main">Canadian Geospace Monitoring</span>

Canadian Geospace Monitoring (CGSM) is a Canadian space science program that was initiated in 2005. CGSM is funded primarily by the Canadian Space Agency, and consists of networks of imagers, meridian scanning photometers, riometers, magnetometers, digital ionosondes, and High Frequency SuperDARN radars. The overarching objective of CGSM is to provide synoptic observations of the spatio-temporal evolution of the ionospheric thermodynamics and electrodynamics at auroral and polar latitudes over a large region of Canada.

<i>Polar</i> (satellite) NASA science spacecraft which studied the polar magnetosphere until 2008

The Global Geospace Science (GGS) Polar satellite was a NASA science spacecraft designed to study the polar magnetosphere and aurorae. It was launched into orbit in February 1996, and continued operations until the program was terminated in April 2008. The spacecraft remains in orbit, though it is now inactive. Polar is the sister ship to GGS Wind.

Dynamics Explorer was a NASA mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two unmanned satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">FR-1 (satellite)</span> French scientific satellite; the second French satellite

FR-1 was the second French satellite. Planned as the first French satellite, it was launched on 6 December 1965—ten days after the actual first French satellite, Astérix—by an American Scout X-4 rocket from the Western Range at Vandenberg Air Force Base. The scientific satellite studied the composition and structure of the ionosphere, plasmasphere, and magnetosphere by measuring the propagation of very low frequency (VLF) waves and the electron density of plasma in those portions of the Earth's atmosphere. FR-1's VLF receiver operated until 26 August 1968. FR-1 remains in orbit as of 2023.

Llewelyn Robert Owen Storey is a British physicist and electrical engineer who has worked and lived most of his adult life in France. He is known for his research on the Earth's atmosphere, especially whistlers—very low frequency (VLF) radio waves caused by lightning strikes—and the plasmasphere. He was the first person to prove whistlers are caused by lightning strikes and to deduce the plasmasphere's existence. He was heavily involved in designing scientific instruments for FR-1, a 1965 French-American satellite, and subsequent studies and experiments using data FR-1 collected.

<span class="mw-page-title-main">OV3-3</span> US Air Force satellite

Orbiting Vehicle 3-3, launched 4 August 1966, was the third satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured charged particles in orbit so that their danger to space-based payloads could be assessed. OV3-3 is still in orbit as of 29 July 2021.

<span class="mw-page-title-main">OV3-2</span> US Air Force satellite

Orbiting Vehicle 3-2, launched 28 October 1966, was the fourth satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured charged particles in orbit, mapping irregularities in the ionosphere, particularly the auroral zone. OV3-2 reentered the Earth's atmosphere on 29 September 1971.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

References

  1. "Viking - Orbit". Heavens-Above . 15 April 2019. Retrieved 16 April 2019.
  2. "Ariane 1 SPOT-1 & Viking Launch". NextSpaceflight.com. Retrieved January 28, 2023.
  3. Krebs, Gunter D. "Viking". Gunter's Space Page. Retrieved January 29, 2023.
  4. 1 2 3 "VIKING - Sweden's first satellite". Swedish Institute for Space Physics. Retrieved January 28, 2023.
  5. Scientific results from the Swedish Viking satellite Hultqvist, Bengt. Status Report, 1988 Swedish Inst. of Space Physics, Kiruna.
  6. "Viking - Satellite Information". Satellite database. Heavens-Above. Retrieved 2013-09-21.