Voltage-controlled oscillator

Last updated
A microwave (12-18 GHz) voltage-controlled oscillator General Microwave VCO.png
A microwave (12–18 GHz) voltage-controlled oscillator

A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The applied input voltage determines the instantaneous oscillation frequency. Consequently, a VCO can be used for frequency modulation (FM) or phase modulation (PM) by applying a modulating signal to the control input. A VCO is also an integral part of a phase-locked loop. VCOs are used in synthesizers to generate a waveform whose pitch can be adjusted by a voltage determined by a musical keyboard or other input.

Contents

A voltage-to-frequency converter (VFC) is a special type of VCO designed to be very linear in frequency control over a wide range of input control voltages. [1] [2] [3]

Types

VCOs can be generally categorized into two groups based on the type of waveform produced. [4]

Frequency control

Schematic of an audio-frequency voltage-controlled oscillator Voltage controlled oscillator.svg
Schematic of an audio-frequency voltage-controlled oscillator

A voltage-controlled capacitor is one method of making an LC oscillator vary its frequency in response to a control voltage. Any reverse-biased semiconductor diode displays a measure of voltage-dependent capacitance and can be used to change the frequency of an oscillator by varying a control voltage applied to the diode. Special-purpose variable-capacitance varactor diodes are available with well-characterized wide-ranging values of capacitance. A varactor is used to change the capacitance (and hence the frequency) of an LC tank. A varactor can also change loading on a crystal resonator and pull its resonant frequency.

For low-frequency VCOs, other methods of varying the frequency (such as altering the charging rate of a capacitor by means of a voltage-controlled current source) are used (see function generator).

The frequency of a ring oscillator is controlled by varying either the supply voltage, the current available to each inverter stage, or the capacitive loading on each stage.

Phase-domain equations

VCOs are used in analog applications such as frequency modulation and frequency-shift keying. The functional relationship between the control voltage and the output frequency for a VCO (especially those used at radio frequency) may not be linear, but over small ranges, the relationship is approximately linear, and linear control theory can be used. A voltage-to-frequency converter (VFC) is a special type of VCO designed to be very linear over a wide range of input voltages.

Modeling for VCOs is often not concerned with the amplitude or shape (sinewave, triangle wave, sawtooth) but rather its instantaneous phase. In effect, the focus is not on the time-domain signal A sin(ωt+θ0) but rather the argument of the sine function (the phase). Consequently, modeling is often done in the phase domain.

The instantaneous frequency of a VCO is often modeled as a linear relationship with its instantaneous control voltage. The output phase of the oscillator is the integral of the instantaneous frequency.

  • is the instantaneous frequency of the oscillator at time t (not the waveform amplitude)
  • is the quiescent frequency of the oscillator (not the waveform amplitude)
  • is called the oscillator sensitivity, or gain. Its units are hertz per volt.
  • is the VCO's frequency
  • is the VCO's output phase
  • is the time-domain control input or tuning voltage of the VCO

For analyzing a control system, the Laplace transforms of the above signals are useful.

Design and circuits

Tuning range, tuning gain and phase noise are the important characteristics of a VCO. Generally, low phase noise is preferred in a VCO. Tuning gain and noise present in the control signal affect the phase noise; high noise or high tuning gain imply more phase noise. Other important elements that determine the phase noise are sources of flicker noise (1/f noise) in the circuit, [5] the output power level, and the loaded Q factor of the resonator. [6] (see Leeson's equation). The low frequency flicker noise affects the phase noise because the flicker noise is heterodyned to the oscillator output frequency due to the non-linear transfer function of active devices. The effect of flicker noise can be reduced with negative feedback that linearizes the transfer function (for example, emitter degeneration).

VCOs generally have lower Q factor compared to similar fixed-frequency oscillators, and so suffer more jitter. The jitter can be made low enough for many applications (such as driving an ASIC), in which case VCOs enjoy the advantages of having no off-chip components (expensive) or on-chip inductors (low yields on generic CMOS processes).

LC oscillators

Commonly used VCO circuits are the Clapp and Colpitts oscillators. The more widely used oscillator of the two is Colpitts and these oscillators are very similar in configuration.

Crystal oscillators

27 MHz VCXO clock generator IC (TLSI T73227), used in a DVB-T set-top box. Skymaster DT 500 - TLSI T73227-91730.jpg
27 MHz VCXO clock generator IC (TLSI T73227), used in a DVB-T set-top box.

A voltage-controlled crystal oscillator (VCXO) is used for fine adjustment of the operating frequency. The frequency of a voltage-controlled crystal oscillator can be varied a few tens of parts per million (ppm) over a control voltage range of typically 0 to 3 volts, because the high Q factor of the crystals allows frequency control over only a small range of frequencies.

A 26 MHz TCVCXO SMD Cystal Oscillator TCXO.png
A 26 MHz TCVCXO

A temperature-compensated VCXO (TCVCXO) incorporates components that partially correct the dependence on temperature of the resonant frequency of the crystal. A smaller range of voltage control then suffices to stabilize the oscillator frequency in applications where temperature varies, such as heat buildup inside a transmitter.

Placing the oscillator in a crystal oven at a constant but higher-than-ambient temperature is another way to stabilize oscillator frequency. High stability crystal oscillator references often place the crystal in an oven and use a voltage input for fine control. [7] The temperature is selected to be the turnover temperature: the temperature where small changes do not affect the resonance. The control voltage can be used to occasionally adjust the reference frequency to a NIST source. Sophisticated designs may also adjust the control voltage over time to compensate for crystal aging.[ citation needed ]

Clock generators

A clock generator is an oscillator that provides a timing signal to synchronize operations in digital circuits. VCXO clock generators are used in many areas such as digital TV, modems, transmitters and computers. Design parameters for a VCXO clock generator are tuning voltage range, center frequency, frequency tuning range and the timing jitter of the output signal. Jitter is a form of phase noise that must be minimised in applications such as radio receivers, transmitters and measuring equipment.

When a wider selection of clock frequencies is needed the VCXO output can be passed through digital divider circuits to obtain lower frequencies or be fed to a phase-locked loop (PLL). ICs containing both a VCXO (for external crystal) and a PLL are available. A typical application is to provide clock frequencies in a range from 12 kHz to 96 kHz to an audio digital-to-analog converter.

Frequency synthesizers

A frequency synthesizer generates precise and adjustable frequencies based on a stable single-frequency clock. A digitally controlled oscillator based on a frequency synthesizer may serve as a digital alternative to analog voltage controlled oscillator circuits.

Applications

The Korg Monologue is a monophonic synthesizer with two VCOs. Korg Monologue Synthesizer.jpg
The Korg Monologue is a monophonic synthesizer with two VCOs.

VCOs are used in function generators, phase-locked loops including frequency synthesizers used in communication equipment and the production of electronic music, to generate variable tones in synthesizers.

Function generators are low-frequency oscillators which feature multiple waveforms, typically sine, square, and triangle waves. Monolithic function generators are voltage-controlled.

Analog phase-locked loops typically contain VCOs. High-frequency VCOs are usually used in phase-locked loops for radio receivers. Phase noise is the most important specification in this application.[ citation needed ]

Audio-frequency VCOs are used in analog music synthesizers. For these, sweep range, linearity, and distortion are often the most important specifications. Audio-frequency VCOs for use in musical contexts were largely superseded in the 1980s by their digital counterparts, digitally controlled oscillators (DCOs), due to their output stability in the face of temperature changes during operation. Since the 1990s, musical software has become the dominant sound-generating method.

Voltage-to-frequency converters are voltage-controlled oscillators with a highly linear relation between applied voltage and frequency. They are used to convert a slow analog signal (such as from a temperature transducer) to a signal suitable for transmission over a long distance, since the frequency will not drift or be affected by noise. Oscillators in this application may have sine or square wave outputs.

Where the oscillator drives equipment that may generate radio-frequency interference, adding a varying voltage to its control input, called dithering, [8] [9] [10] [11] [12] [13] [ excessive citations ] can disperse the interference spectrum to make it less objectionable (see spread spectrum clock).

See also

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Analog-to-digital converter</span> System that converts an analog signal into a digital signal

In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

<span class="mw-page-title-main">Phase-locked loop</span> Electronic control system

A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several different types; the simplest is an electronic circuit consisting of a variable frequency oscillator and a phase detector in a feedback loop. The oscillator's frequency and phase are controlled proportionally by an applied voltage, hence the term voltage-controlled oscillator (VCO). The oscillator generates a periodic signal of a specific frequency, and the phase detector compares the phase of that signal with the phase of the input periodic signal, to adjust the oscillator to keep the phases matched.

<span class="mw-page-title-main">Modular synthesizer</span> Synthesizer composed of separate modules

Modular synthesizers are synthesizers composed of separate modules for different functions. The modules can be connected together by the user to create a patch. The outputs from the modules may include audio signals, analog control voltages, or digital signals for logic or timing conditions. Typical modules are voltage-controlled oscillators, voltage-controlled filters, voltage-controlled amplifiers and envelope generators.

<span class="mw-page-title-main">Relaxation oscillator</span> Oscillator that produces a nonsinusoidal repetitive waveform

In electronics a relaxation oscillator is a nonlinear electronic oscillator circuit that produces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave. The circuit consists of a feedback loop containing a switching device such as a transistor, comparator, relay, op amp, or a negative resistance device like a tunnel diode, that repetitively charges a capacitor or inductor through a resistance until it reaches a threshold level, then discharges it again. The period of the oscillator depends on the time constant of the capacitor or inductor circuit. The active device switches abruptly between charging and discharging modes, and thus produces a discontinuously changing repetitive waveform. This contrasts with the other type of electronic oscillator, the harmonic or linear oscillator, which uses an amplifier with feedback to excite resonant oscillations in a resonator, producing a sine wave.

A numerically controlled oscillator (NCO) is a digital signal generator which creates a synchronous, discrete-time, discrete-valued representation of a waveform, usually sinusoidal. NCOs are often used in conjunction with a digital-to-analog converter (DAC) at the output to create a direct digital synthesizer (DDS).

<span class="mw-page-title-main">Phase detector</span> Electrical circuit detecting phase difference

A phase detector or phase comparator is a frequency mixer, analog multiplier or logic circuit that generates a signal which represents the difference in phase between two signal inputs.

A variable frequency oscillator (VFO) in electronics is an oscillator whose frequency can be tuned over some range. It is a necessary component in any tunable radio transmitter and in receivers that works by the superheterodyne principle. The oscillator controls the frequency to which the apparatus is tuned.

<span class="mw-page-title-main">Voltage-controlled filter</span> Electronic filter circuit controlled with voltage

A voltage-controlled filter (VCF) is an electronic filter whose operating characteristics can be set by an input control voltage. Voltage controlled filters are widely used in synthesizers.

<span class="mw-page-title-main">Direct digital synthesis</span>

Direct digital synthesis (DDS) is a method employed by frequency synthesizers used for creating arbitrary waveforms from a single, fixed-frequency reference clock. DDS is used in applications such as signal generation, local oscillators in communication systems, function generators, mixers, modulators, sound synthesizers and as part of a digital phase-locked loop.

<span class="mw-page-title-main">Function generator</span> Electronic test equipment used to generate electrical waveforms

In electrical engineering, a function generator is usually a piece of electronic test equipment or software used to generate different types of electrical waveforms over a wide range of frequencies. Some of the most common waveforms produced by the function generator are the sine wave, square wave, triangular wave and sawtooth shapes. These waveforms can be either repetitive or single-shot. Another feature included on many function generators is the ability to add a DC offset. Integrated circuits used to generate waveforms may also be described as function generator ICs.

In electronics, a frequency multiplier is an electronic circuit that generates an output signal and that output frequency is a harmonic (multiple) of its input frequency. Frequency multipliers consist of a nonlinear circuit that distorts the input signal and consequently generates harmonics of the input signal. A subsequent bandpass filter selects the desired harmonic frequency and removes the unwanted fundamental and other harmonics from the output.

A frequency divider, also called a clock divider or scaler or prescaler, is a circuit that takes an input signal of a frequency, , and generates an output signal of a frequency:

<span class="mw-page-title-main">Yamaha CS30/CS30L synthesizer</span> Analogue keyboard synthesizer

The Yamaha CS30/CS30L is an analog keyboard synthesizer that was released in 1977. It is the top of the range in Yamaha's original line-up of monophonic synthesizers, others in the range being the CS5, CS10 and CS15. It features two voltage controlled oscillators (VCOs), two voltage controlled filters, two voltage controlled amplifiers (VCAs) and three envelope generators. It also sports a ring modulator and a voltage controlled low-frequency oscillator (LFO).

A frequency synthesizer is an electronic circuit that generates a range of frequencies from a single reference frequency. Frequency synthesizers are used in many modern devices such as radio receivers, televisions, mobile telephones, radiotelephones, walkie-talkies, CB radios, cable television converter boxes, satellite receivers, and GPS systems. A frequency synthesizer may use the techniques of frequency multiplication, frequency division, direct digital synthesis, frequency mixing, and phase-locked loops to generate its frequencies. The stability and accuracy of the frequency synthesizer's output are related to the stability and accuracy of its reference frequency input. Consequently, synthesizers use stable and accurate reference frequencies, such as those provided by a crystal oscillator.

<span class="mw-page-title-main">Oberheim Xpander</span> Analogue synthesizer

The Oberheim Xpander is an analog synthesizer launched by Oberheim in 1984 and discontinued in 1988. It is essentially a keyboardless, six-voice version of the Matrix-12. Utilizing Oberheim's Matrix Modulation technology, the Xpander combined analog audio generation with the flexibility of digital controls logic.

<span class="mw-page-title-main">Korg Mono/Poly</span> Analog synthesizer, manufactured by Korg from 1981 to 1984

The Korg Mono/Poly (MP-4) is a 44 key "mono-polyphonic" analog synthesizer manufactured by Korg from 1981 to 1984. This keyboard is the sister synthesizer to the Korg Polysix. It has four highly stable voltage-controlled oscillators (VCOs), a 4-pole, self-oscillating low pass filter (LPF), wide modulation capabilities and pseudo-polyphony (paraphony).

<span class="mw-page-title-main">Texas Instruments SN76477</span> Sound generating integrated circuit

SN76477 "complex sound generator" is a sound chip produced by Texas Instruments (TI). The chip came to market in 1978, and TI ceased production of the part. A compatible version is identified as ICS76477. The chip is typically used as a sound effects generator in arcade games and toys and for hobby projects. The use of the SN76477 in a musical context is limited by the fact that it was difficult to electronically control the pitch of the produced sound.

<span class="mw-page-title-main">Akai AX60</span> Polyphonic analogue synthesizer

The AX60 is a polyphonic analogue keyboard synthesizer manufactured by Akai Professional in the mid-1980s. It was Akai's answer to the popular Roland Juno series synthesizers. The AX60 uses voltage-controlled analogue oscillators and filter circuitry based on the Curtis Electronics CEM 3394 integrated circuit.

A PLL multibit or multibit PLL is a phase-locked loop (PLL) which achieves improved performance compared to a unibit PLL by using more bits. Unibit PLLs use only the most significant bit (MSB) of each counter's output bus to measure the phase, while multibit PLLs use more bits. PLLs are an essential component in telecommunications.

References

  1. Godse, Atul P.; Bakshi, U. A. (2009). Linear Integrated Circuits And Applications. Technical Publications. p. 497. ISBN   978-8189411305.
  2. Drosg, Manfred; Steurer, Michael Morten (2014). Dealing with Electronics. Walter de Gruyter GmbH. pp. 4.5.3. ISBN   978-3110385625.
  3. Salivahanan, S. (2008). Linear Integrated Circuits. Tata McGraw-Hill Education. p. 515. ISBN   978-0070648180.
  4. Electrical4U. "Voltage Controlled Oscillator | VCO | Electrical4U". Electrical4U. Retrieved 2021-04-22.{{cite news}}: CS1 maint: numeric names: authors list (link)
  5. Wideband VCO from Herley - General Microwave - "For optimum performance, the active element used is a silicon bipolar transistor. (This is in lieu of GaAs FETs which typically exhibit 10-20 dB poorer phase noise performance)" Archived 8 March 2012 at the Wayback Machine
  6. Rhea, Randall W. (1997), Oscillator Design & Computer Simulation (Second ed.), McGraw-Hill, ISBN   0-07-052415-7
  7. For example, an HP/Agilent 10811 reference oscillator
  8. "Frequency Modulation of System Clocksfor EMI Reduction" (PDF). hpl.hp.com. HP. Retrieved 23 January 2020.
  9. "EMI Reduction by Spread-Spectrum Frequency Dithering". incompliancemag.com. Same Page Publishing. Retrieved 23 January 2020.
  10. "Oscillator – spread-spectrum resistor-programmable". www.planetanalog.com. Planet Analog. Retrieved 23 January 2020.
  11. "Frequency Dithering With the UCC28950 and TLV3201". TI Application Report. frequency-dithering-with-the-ucc28950-and-tlv3201-1339689710.pdf: TI. SLUA646. May 2012.{{cite journal}}: CS1 maint: location (link)
  12. Bell, Bob. "Dither a power converter's operatingfrequency to reduce peak emissions" (PDF). m.eetcom. EE Times. Retrieved 23 January 2020.
  13. "PFC Pre-Regulator Frequency Dithering Circuit" (PDF). www.ti.com. TI. Retrieved 23 January 2020.