Voltziales

Last updated

Voltziales
Temporal range: Late Carboniferous–Late Cretaceous
Voltzia heterophylla.JPG
Voltzia heterophylla
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Gymnospermae
Division: Pinophyta
Class: Pinopsida
Order: Voltziales
Andreanszky 1954
Families

See text

Voltziales is an extinct order of conifers. The group contains the ancestral lineages from which modern conifer groups emerged. Voltzialean conifers are divided into two informal groups, the primitive "walchian conifers" like Walchia, where the ovuliferous cone is composed of radial shoots and the more advanced "voltzian voltziales", also known as "transitional conifers" where the cone is composed of fertile scales with sessile seeds, like those of modern conifers. [1] [2] [3] Walchian conifers generally grew as small trees. The earliest walchian conifers are known from the Middle Pennsylvanian (Moscovian). The youngest walchian conifers are known from the Late Permian. The earliest "voltzian voltziales" are known from the late Early Permian (Kungurian). [3] Modern conifer lineages emerged from voltzialean ancestors from the Late Permian to Jurassic. [4] Voltzialean conifers outside modern groups such as Krassilovia / Podozamites survived into the Cretaceous, before becoming extinct. [5] The genus Voltzia was named in honour of the French geologist Philippe Louis Voltz.

Contents

Taxonomy

Related Research Articles

<span class="mw-page-title-main">Jurassic</span> Second period of the Mesozoic Era 201-145 million years ago

The Jurassic is a geologic period and stratigraphic system that spanned from the end of the Triassic Period 201.4 million years ago (Mya) to the beginning of the Cretaceous Period, approximately 145 Mya. The Jurassic constitutes the middle period of the Mesozoic Era and is named after the Jura Mountains, where limestone strata from the period were first identified.

<span class="mw-page-title-main">Conifer</span> Group of cone-bearing seed plants

Conifers are a group of cone-bearing seed plants, a subset of gymnosperms. Scientifically, they make up the division Pinophyta, also known as Coniferophyta or Coniferae. The division contains a single extant class, Pinopsida. All extant conifers are perennial woody plants with secondary growth. The great majority are trees, though a few are shrubs. Examples include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews. The division Pinophyta contains seven families, 60 to 65 genera, and more than 600 living species.

<span class="mw-page-title-main">Ephedraceae</span> Family of plants

Ephedraceae is a family of gymnosperms belonging to Gnetophyta, it contains only a single extant genus, Ephedra, as well as a number of extinct genera from the Early Cretaceous.

<span class="mw-page-title-main">Cycad</span> Division of naked seeded dioecious plants

Cycads are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow very slowly and live very long. Because of their superficial resemblance, they are sometimes mistaken for palms or ferns, but they are not closely related to either group.

<span class="mw-page-title-main">Araucariaceae</span> Family of plants

Araucariaceae – also known as araucarians – is a family of coniferous trees. The family achieved its maximum diversity during the Jurassic and Cretaceous periods, when it was distributed almost worldwide. Most of the Araucariaceae in the Northern Hemisphere vanished in the Cretaceous–Paleogene extinction event, and they are now largely confined to the Southern Hemisphere, except for a few species of Agathis in Southeast Asia.

<span class="mw-page-title-main">Gnetophyta</span> Division of plants containing three genera of gymnosperms

Gnetophyta is a division of plants, grouped within the gymnosperms, that consists of some 70 species across the three relict genera: Gnetum, Welwitschia, and Ephedra. Fossilized pollen attributed to a close relative of Ephedra has been dated as far back as the Early Cretaceous. Though diverse in the Early Cretaceous, only three families, each containing a single genus, are still alive today. The primary difference between gnetophytes and other gymnosperms is the presence of vessel elements, a system of small tubes (xylem) that transport water within the plant, similar to those found in flowering plants. Because of this, gnetophytes were once thought to be the closest gymnosperm relatives to flowering plants, but more recent molecular studies have brought this hypothesis into question, with many recent phylogenies finding them to be nested within the conifers.

<span class="mw-page-title-main">Gymnosperm</span> Clade of non-flowering, naked-seeded vascular plants

The gymnosperms are a group of seed-producing plants that includes conifers, cycads, Ginkgo, and gnetophytes, forming the clade Gymnospermae. The term gymnosperm comes from the composite word in Greek: γυμνόσπερμος, literally meaning 'naked seeds'. The name is based on the unenclosed condition of their seeds. The non-encased condition of their seeds contrasts with the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, which are often modified to form cones, or on their own as in yew, Torreya, Ginkgo. Gymnosperm lifecycles involve alternation of generations. They have a dominant diploid sporophyte phase and a reduced haploid gametophyte phase which is dependent on the sporophytic phase. The term "gymnosperm" is often used in paleobotany to refer to all non-angiosperm seed plants. In that case, to specify the modern monophyletic group of gymnosperms, the term Acrogymnospermae is sometimes used.

<span class="mw-page-title-main">Pinaceae</span> Family of conifers

The Pinaceae, or pine family, are conifer trees or shrubs, including many of the well-known conifers of commercial importance such as cedars, firs, hemlocks, piñons, larches, pines and spruces. The family is included in the order Pinales, formerly known as Coniferales. Pinaceae are supported as monophyletic by their protein-type sieve cell plastids, pattern of proembryogeny, and lack of bioflavonoids. They are the largest extant conifer family in species diversity, with between 220 and 250 species in 11 genera, and the second-largest in geographical range, found in most of the Northern Hemisphere, with the majority of the species in temperate climates, but ranging from subarctic to tropical. The family often forms the dominant component of boreal, coastal, and montane forests. One species, Pinus merkusii, grows just south of the equator in Southeast Asia. Major centres of diversity are found in the mountains of southwest China, Mexico, central Japan, and California.

<span class="mw-page-title-main">Pteridospermatophyta</span> Several distinct polyphyletic groups of extinct seed-bearing plants

Pteridospermatophyta, also called "pteridosperms" or "seed ferns" are a polyphyletic grouping of extinct seed-producing plants. The earliest fossil evidence for plants of this type are the lyginopterids of late Devonian age. They flourished particularly during the Carboniferous and Permian periods. Pteridosperms declined during the Mesozoic Era and had mostly disappeared by the end of the Cretaceous Period, though Komlopteris seem to have survived into Eocene times, based on fossil finds in Tasmania.

<span class="mw-page-title-main">Bennettitales</span> Extinct order of seed plants

Bennettitales is an extinct order of seed plants that first appeared in the Permian period and became extinct in most areas toward the end of the Cretaceous. Bennettitales were amongst the most common seed plants of the Mesozoic, and had morphologies including shrub and cycad-like forms. The foliage of bennettitaleans is superficially nearly indistinguishable from that of cycads, but they are distinguished from cycads by their more complex flower-like reproductive organs, at least some of which were likely pollinated by insects.

<i>Protorosaurus</i> Extinct genus of reptiles

Protorosaurus is an extinct genus of reptile. Members of the genus lived during the late Permian period in what is now Germany and Great Britain. Once believed to have been an ancestor to lizards, Protorosaurus is now known to be one of the oldest and most primitive members of Archosauromorpha, the group that would eventually lead to archosaurs such as crocodilians and dinosaurs.

<span class="mw-page-title-main">Spermatophyte</span> Clade of seed plants

A spermatophyte, also known as a phanerogam or a phaenogam, is any plant that produces seeds, hence the alternative name seed plant. It is a category of embryophyte that includes most of the familiar land plants, including the flowering plants and the gymnosperms, but not ferns, mosses, or algae.

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2011.

<span class="mw-page-title-main">Utrechtiaceae</span> Extinct family of conifers

Utrechtiaceae is an extinct family of trees related to modern conifers. This family dates back to the late Carboniferous and Early Permian.

This article records new taxa of plants that are scheduled to be described during the year 2017, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2017.

This article records new taxa of fossil plants that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2020.

This article records new taxa of fossil plants that are scheduled to be described during the year 2021, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2021.

<i>Jiufengia</i> Extinct genus of therocephalian

Jiufengia is an extinct genus of therocephalian in the family Akidnognathidae. It is known from a single species, Jiufengia jiai, from the Late Permian Naobaogou Formation in China.

This paleobotany list records new fossil plant taxa that were to be described during the year 2012, as well as notes other significant paleobotany discoveries and events which occurred during 2012.

This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.

References

  1. Rothwell, Gar W.; Mapes, Gene; Hernandez-Castillo, Genaro R. (August 2005). "Hanskerpia gen. nov. and Phylogenetic Relationships among the Most Ancient Conifers (Voltziales)". Taxon. 54 (3): 733–750. doi: 10.2307/25065430 . JSTOR   25065430.
  2. Van Waveren, Isabel M. (2019-03-25). "A morphometric analysis of Tobleria bicuspis, a Voltziales seed cone from the early Permian Jambi palaeoflora, Sumatra (Indonesia)". PhytoKeys (119): 67–95. doi: 10.3897/phytokeys.119.29555 . ISSN   1314-2003. PMC   6443619 . PMID   31015778.
  3. 1 2 Looy, Cindy V.; Duijnstee, Ivo A. P. (March 2020). "Voltzian Conifers of the South Ash Pasture Flora (Guadalupian, Texas): Johniphyllum multinerve gen. et sp. nov., Pseudovoltzia sapflorensis sp. nov., and Wantus acaulis gen. et sp. nov". International Journal of Plant Sciences. 181 (3): 363–385. doi:10.1086/706853. ISSN   1058-5893. S2CID   208592093.
  4. Leslie, Andrew B.; Beaulieu, Jeremy; Holman, Garth; Campbell, Christopher S.; Mei, Wenbin; Raubeson, Linda R.; Mathews, Sarah (September 2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi: 10.1002/ajb2.1143 . PMID   30157290.
  5. Herrera, Fabiany; Shi, Gongle; Mays, Chris; Ichinnorov, Niiden; Takahashi, Masamichi; Bevitt, Joseph J.; Herendeen, Patrick S.; Crane, Peter R. (2020-01-15). Peppe, Daniel (ed.). "Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers". PLOS ONE. 15 (1): e0226779. Bibcode:2020PLoSO..1526779H. doi: 10.1371/journal.pone.0226779 . ISSN   1932-6203. PMC   6961850 . PMID   31940374.