Von Neumann paradox

Last updated

In mathematics, the von Neumann paradox, named after John von Neumann, is the idea that one can break a planar figure such as the unit square into sets of points and subject each set to an area-preserving affine transformation such that the result is two planar figures of the same size as the original. This was proved in 1929 by John von Neumann, assuming the axiom of choice. It is based on the earlier Banach–Tarski paradox, which is in turn based on the Hausdorff paradox.

Contents

Banach and Tarski had proved that, using isometric transformations, the result of taking apart and reassembling a two-dimensional figure would necessarily have the same area as the original. This would make creating two unit squares out of one impossible. But von Neumann realized that the trick of such so-called paradoxical decompositions was the use of a group of transformations that include as a subgroup a free group with two generators. The group of area-preserving transformations (whether the special linear group or the special affine group) contains such subgroups, and this opens the possibility of performing paradoxical decompositions using them.

Sketch of the method

The following is an informal description of the method found by von Neumann. Assume that we have a free group H of area-preserving linear transformations generated by two transformations, σ and τ, which are not far from the identity element. Being a free group means that all its elements can be expressed uniquely in the form for some n, where the s and s are all non-zero integers, except possibly the first and the last . We can divide this group into two parts: those that start on the left with σ to some non-zero power (we call this set A) and those that start with τ to some power (that is, is zero—we call this set B, and it includes the identity).

If we operate on any point in Euclidean 2-space by the various elements of H we get what is called the orbit of that point. All the points in the plane can thus be classed into orbits, of which there are an infinite number with the cardinality of the continuum. Using the axiom of choice, we can choose one point from each orbit and call the set of these points M. We exclude the origin, which is a fixed point in H. If we then operate on M by all the elements of H, we generate each point of the plane (except the origin) exactly once. If we operate on M by all the elements of A or of B, we get two disjoint sets whose union is all points but the origin.

Now we take some figure such as the unit square or the unit disk. We then choose another figure totally inside it, such as a smaller square, centred at the origin. We can cover the big figure with several copies of the small figure, albeit with some points covered by two or more copies. We can then assign each point of the big figure to one of the copies of the small figure. Let us call the sets corresponding to each copy . We shall now make a one-to-one mapping of each point in the big figure to a point in its interior, using only area-preserving transformations. We take the points belonging to and translate them so that the centre of the square is at the origin. We then take those points in it which are in the set A defined above and operate on them by the area-preserving operation σ τ. This puts them into set B. We then take the points belonging to B and operate on them with σ2. They will now still be in B, but the set of these points will be disjoint from the previous set. We proceed in this manner, using σ3τ on the A points from C2 (after centring it) and σ4 on its B points, and so on. In this way, we have mapped all points from the big figure (except some fixed points) in a one-to-one manner to B type points not too far from the centre, and within the big figure. We can then make a second mapping to A type points.

At this point we can apply the method of the Cantor-Bernstein-Schroeder theorem. This theorem tells us that if we have an injection from set D to set E (such as from the big figure to the A type points in it), and an injection from E to D (such as the identity mapping from the A type points in the figure to themselves), then there is a one-to-one correspondence between D and E. In other words, having a mapping from the big figure to a subset of the A points in it, we can make a mapping (a bijection) from the big figure to all the A points in it. (In some regions points are mapped to themselves, in others they are mapped using the mapping described in the previous paragraph.) Likewise we can make a mapping from the big figure to all the B points in it. So looking at this the other way round, we can separate the figure into its A and B points, and then map each of these back into the whole figure (that is, containing both kinds of points)!

This sketch glosses over some things, such as how to handle fixed points. It turns out that more mappings and more sets are necessary to work around this.

Consequences

The paradox for the square can be strengthened as follows:

Any two bounded subsets of the Euclidean plane with non-empty interiors are equidecomposable with respect to the area-preserving affine maps.

This has consequences concerning the problem of measure. As von Neumann notes,

"Infolgedessen gibt es bereits in der Ebene kein nichtnegatives additives Maß (wo das Einheitsquadrat das Maß 1 hat), dass [sic] gegenüber allen Abbildungen von A2 invariant wäre." [1]
"In accordance with this, already in the plane there is no nonnegative additive measure (for which the unit square has a measure of 1), which is invariant with respect to all transformations belonging to A2 [the group of area-preserving affine transformations]."

To explain this a bit more, the question of whether a finitely additive measure exists, that is preserved under certain transformations, depends on what transformations are allowed. The Banach measure of sets in the plane, which is preserved by translations and rotations, is not preserved by non-isometric transformations even when they do preserve the area of polygons. As explained above, the points of the plane (other than the origin) can be divided into two dense sets which we may call A and B. If the A points of a given polygon are transformed by a certain area-preserving transformation and the B points by another, both sets can become subsets of the B points in two new polygons. The new polygons have the same area as the old polygon, but the two transformed sets cannot have the same measure as before (since they contain only part of the B points), and therefore there is no measure that "works".

The class of groups isolated by von Neumann in the course of study of Banach–Tarski phenomenon turned out to be very important for many areas of mathematics: these are amenable groups, or groups with an invariant mean, and include all finite and all solvable groups. Generally speaking, paradoxical decompositions arise when the group used for equivalences in the definition of equidecomposability is not amenable.

Recent progress

Von Neumann's paper left open the possibility of a paradoxical decomposition of the interior of the unit square with respect to the linear group SL(2,R) (Wagon, Question 7.4). In 2000, Miklós Laczkovich proved that such a decomposition exists. [2] More precisely, let A be the family of all bounded subsets of the plane with non-empty interior and at a positive distance from the origin, and B the family of all planar sets with the property that a union of finitely many translates under some elements of SL(2,R) contains a punctured neighbourhood of the origin. Then all sets in the family A are SL(2,R)-equidecomposable, and likewise for the sets in B. It follows that both families consist of paradoxical sets.

See also

Related Research Articles

<span class="mw-page-title-main">Group representation</span> Group homomorphism into the general linear group over a vector space

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself ; in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.

<span class="mw-page-title-main">Projective plane</span> Geometric concept of a 2D space with a "point at infinity" adjoined

In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

Tarski's circle-squaring problem is the challenge, posed by Alfred Tarski in 1925, to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. This was proven to be possible by Miklós Laczkovich in 1990; the decomposition makes heavy use of the axiom of choice and is therefore non-constructive. Laczkovich estimated the number of pieces in his decomposition at roughly 1050. A constructive solution was given by Łukasz Grabowski, András Máthé and Oleg Pikhurko in 2016 which worked everywhere except for a set of measure zero. More recently, Andrew Marks and Spencer Unger (2017) gave a completely constructive solution using about Borel pieces. In 2021 Máthé, Noel and Pikhurko improved the properties of the pieces.

<span class="mw-page-title-main">Affine geometry</span> Euclidean geometry without distance and angles

In mathematics, affine geometry is what remains of Euclidean geometry when ignoring the metric notions of distance and angle.

Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

<span class="mw-page-title-main">Homothety</span>

In mathematics, a homothety is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point to a point by the rule

In mathematics, an invariant subspace of a linear mapping T : VV i.e. from some vector space V to itself, is a subspace W of V that is preserved by T; that is, T(W) ⊆ W.

The Hausdorff paradox is a paradox in mathematics named after Felix Hausdorff. It involves the sphere . It states that if a certain countable subset is removed from , then the remainder can be divided into three disjoint subsets and such that and are all congruent. In particular, it follows that on there is no finitely additive measure defined on all subsets such that the measure of congruent sets is equal.

<span class="mw-page-title-main">Mohr's circle</span> Geometric civil engineering calculation technique

Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus.

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set with some added structure.

In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping.

In mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies. An important special case of conservative systems are the measure-preserving dynamical systems.

The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces.

<span class="mw-page-title-main">Steiner conic</span>

The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field.

In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as universal representation techniques in the literature.

The Laguerre transformations or axial homographies are an analogue of Möbius transformations over the dual numbers. When studying these transformations, the dual numbers are often interpreted as representing oriented lines on the plane. The Laguerre transformations map lines to lines, and include in particular all isometries of the plane.

References

  1. On p. 85 of: von Neumann, J. (1929), "Zur allgemeinen Theorie des Masses" (PDF), Fundamenta Mathematicae , 13: 73–116, doi:10.4064/fm-13-1-73-116
  2. Laczkovich, Miklós (1999), "Paradoxical sets under SL2[R]", Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 42: 141–145