Von Zeipel theorem

Last updated

In astrophysics, the von Zeipel theorem states that the radiative flux in a uniformly rotating star is proportional to the local effective gravity . The theorem is named after Swedish astronomer Edvard Hugo von Zeipel.

The theorem is:

where the luminosity and mass are evaluated on a surface of constant pressure . The effective temperature can then be found at a given colatitude from the local effective gravity: [1] [2]

This relation ignores the effect of convection in the envelope, so it primarily applies to early-type stars. [3]

According to the theory of rotating stars, [4] if the rotational velocity of a star depends only on the radius, it cannot simultaneously be in thermal and hydrostatic equilibrium. This is called the von Zeipel paradox. The paradox is resolved, however, if the rotational velocity also depends on height, or there is a meridional circulation. A similar situation may arise in accretion disks. [5]

Related Research Articles

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

Differential rotation is seen when different parts of a rotating object move with different angular velocities at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid. In fluid objects, such as accretion disks, this leads to shearing. Galaxies and protostars usually show differential rotation; examples in the Solar System include the Sun, Jupiter and Saturn.

The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are mostly driven by the less intense line absorption. The Eddington limit is invoked to explain the observed luminosity of accreting black holes such as quasars.

The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953). It is the dimensionless number that expresses the ratio of the buoyancy term to the flow shear term:

<span class="mw-page-title-main">Asteroseismology</span> Study of oscillations in stars

Asteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.

<span class="mw-page-title-main">Stellar dynamics</span>

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

<span class="mw-page-title-main">Stellar structure</span> Structure of stars

Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.

<span class="mw-page-title-main">Surface gravity</span> Standard surface gravity

The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere.

<span class="mw-page-title-main">Photon sphere</span> High-gravity spherical region of space around which massless particles travel in orbits

A photon sphere or photon circle is an area or region of space where gravity is so strong that photons are forced to travel in orbits, which is also sometimes called the last photon orbit. The radius of the photon sphere, which is also the lower bound for any stable orbit, is, for a Schwarzschild black hole,

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

Edvard Hugo von Zeipel was a Swedish astronomer, with the specialist fields of study of celestial mechanics, astrophotography, and theoretical astrophysics. He worked at the Stockholm Observatory from 1897 to 1900, participated in scientific expeditions to Spitzbergen in 1898, 1901, and 1902, then worked at the Pulkovo Observatory from 1901 to 1902, the Paris observatory from 1904 to 1906, and the Uppsala Astronomical Observatory from 1911. He proved a key theorem about the Painlevé conjecture.

<span class="mw-page-title-main">Inertial wave</span>

Inertial waves, also known as inertial oscillations, are a type of mechanical wave possible in rotating fluids. Unlike surface gravity waves commonly seen at the beach or in the bathtub, inertial waves flow through the interior of the fluid, not at the surface. Like any other kind of wave, an inertial wave is caused by a restoring force and characterized by its wavelength and frequency. Because the restoring force for inertial waves is the Coriolis force, their wavelengths and frequencies are related in a peculiar way. Inertial waves are transverse. Most commonly they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves, geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are also likely to exist in the molten core of the rotating Earth.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

Solar-like oscillations are oscillations in stars that are excited in the same way as those in the Sun, namely by turbulent convection in its outer layers. Stars that show solar-like oscillations are called solar-like oscillators. The oscillations are standing pressure and mixed pressure-gravity modes that are excited over a range in frequency, with the amplitudes roughly following a bell-shaped distribution. Unlike opacity-driven oscillators, all the modes in the frequency range are excited, making the oscillations relatively easy to identify. The surface convection also damps the modes, and each is well-approximated in frequency space by a Lorentzian curve, the width of which corresponds to the lifetime of the mode: the faster it decays, the broader is the Lorentzian. All stars with surface convection zones are expected to show solar-like oscillations, including cool main-sequence stars, subgiants and red giants. Because of the small amplitudes of the oscillations, their study has advanced tremendously thanks to space-based missions.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

<span class="mw-page-title-main">RR Caeli</span> Double star in the constellation Caelum

RR Caeli is an eclipsing binary star in the constellation Caelum. It is 69 light years from Earth.

<span class="mw-page-title-main">Accretion disk</span> Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

References

  1. Zeipel, Edvard Hugo von (1924). "The radiative equilibrium of a rotating system of gaseous masses". Monthly Notices of the Royal Astronomical Society . 84 (9): 665–719. Bibcode:1924MNRAS..84..665V. doi: 10.1093/mnras/84.9.665 .
  2. Maeder, André (1999). "Stellar evolution with rotation IV: von Zeipel's theorem and anistropic losses of mass and angular momentum". Astronomy and Astrophysics . 347: 185–193. Bibcode:1999A&A...347..185M.
  3. Lucy, L. B. (1967). "Gravity-Darkening for Stars with Convective Envelopes". Zeitschrift für Astrophysik. 65: 89. Bibcode:1967ZA.....65...89L.
  4. Tassoul, J.-L. (1978). Theory of Rotating Stars. Princeton: Princeton Univ. Press.
  5. Kley, W.; Lin, D. N. C. (1998). "Two-Dimensional Viscous Accretion Disk Models. I. On Meridional Circulations In Radiative Regions". The Astrophysical Journal. 397: 600–612. Bibcode:1992ApJ...397..600K. doi: 10.1086/171818 .