Wet nanotechnology

Last updated

Wet nanotechnology (also known as wet nanotech) involves working up to large masses from small ones. [1]

Contents

Wet nanotechnology requires water in which the process occurs. [1] The process also involves chemists and biologists trying to reach larger scales by putting together individual molecules. [1] While Eric Drexler put forth the idea of nano-assemblers working dry, wet nanotech appears to be the likely first area in which something like a nano-assembler may achieve economic results. [2] Pharmaceuticals and bioscience are central features of most nanotech start-ups. [2] Richard A.L. Jones calls nanotechnology that steals bits of natural nanotechnology and puts them in a synthetic structure biokleptic nanotechnology. [3] He calls building with synthetic materials according to nature's design principles biomimetic nanotechnology. [3]

Using these guiding principles could lead to trillions of nanotech robots, that resemble bacteria in structural properties, entering a person's blood stream to do medical treatments. [3]

Background

Wet nanotechnology is an anticipated new sub-discipline of nanotech that is going to mostly be dominated by the different forms of wet engineering. The processes that will be used are going to take place in aqueous solutions and are very close to that of biotechnology manufacturing / bio-molecular manufacturing which is largely concerned with the production of biomolecules like proteins and DNA/RNA. [4] There is some overlap of Biotechnology and Wet nanotechnology because living things are inherently bottom-up engineered and any exploitation of this by biotechnologists means they dabble in bottom-up engineering (though mostly at the level of producing macromolecules like proteins and nucleic acids from there monomer units. Wet nanotech, however, seeks to analyse living things and their components as engineering systems and aims to understand them completely to have complete control of the behavior of the system and to derive principles and methods that can be applied more broadly to bottom up manufacturing, to manipulate matter on the atomic and molecular scales and to creating machines or devices at the nanometer and microscopic scales. Biotech is mostly about exploiting living systems in any way possible. Molecular Biology and related disciplines compare the mechanism of function of proteins in particular - and nucleic acids to a lesser extent - as like "molecular machines". In order for engineers to mimic these nanoscale machines in a way that they could be produced with some efficiency, they must look into bottom-up manufacturing. Bottom-up manufacturing deals with manipulating individual atoms during the manufacturing process, so that there is absolute control of their placement and interactions. [5]

Then from the atomic scale, nanomachines could be made and even be designed to self-replicate themselves as long as they are designed in an environment with copious amount of the needed materials. Because individual atoms are being manipulated in the process, bottom-up manufacturing is often referred to as “atom by atom” manufacturing. [5] If the manufacturing of nanomachines can be made more readily available through improved techniques, there could be a large economic and social impact. This would start with improvements in making microelectromechanical systems and then would allow for the creation of nanoscale biological sensors along with things that have not been thought of yet. [4] This is because “wet” nanotech is only in the beginning of its life. Scientists and engineers alike feel that biomimetics is a great way to start looking at creating nanoscale machines. [5] Humans have only had a few thousand years to try to learn about the mechanics of things at really small scales. However, nature has been working on perfecting the design and functionality of nanomachines for millions of years. This is why there are already nanomachines, such as ATP synthase, working in our bodies that have an unheard of 95% efficiency. [6]

“Wet” vs. “Dry”

Wet nanotechnology is a form of wet engineering as opposed to dry engineering. [4] There are different fields that deal with those two types of engineering. Biologists, from the point of view of nanotechnology, deal with wet engineering. They study processes that happen in life, and for the most part those processes take place in aqueous environments. Our bodies are made up mostly of water.

Electrical and mechanical engineers are on the other side of the line in dry engineering. [4] They are involved with processes and manufacturing that does not occur in aqueous environments.

For the most part, wet engineering deals with “soft” materials that allow for flexibility which is vital at the nanoscale in biological manufacturing. Dry engineers mostly handle things with rigid structures and parts. [5] These differences stem for the fact that the forces that the two types of engineers must deal with are very different. At a larger scale, most things are dominated by Newtonian physics. However, when one looks at the nanoscale, especially in biological matters, the dominating force is Brownian motion. [5]

Because nanotechnology in the new age is going to most likely deal with both dry and wet in conjunction with each other, there is going to have to be a change in the way society looks at engineering and manufacturing. People will have to be not only well educated in engineering but also in biology because the integration of the two is how there will be the largest improvements in nanotechnology. [4]

Brownian Motion as it relates to Wet Nanotech

With the existence of natural nanomachines, “a complex precision microscopic-sized machine that fits the standard definition of a machine”, [6] such as ATP synthase and T4 bacteriophage, scientists and biologists know that they are capable of making similar types of machines at the same scale. [5] However, nature has had a long time to perfect the building and creation of these nanomachines and humankind has only just begun to look into them with greater interest.

This interest may have been sparked because of the existence of nanomachines such as ATP synthase (adenosine triphosphate), which is the “second in importance only to DNA”. [6] ATP is the main energy converter that our bodies contain and without it, life as we know it would not be able to flourish or even survive. [6]

What does Brownian motion have to do with complex nanomachines?

Brownian motion is a random, constantly fluctuating force that acts on a body in environments that are at a microscale. [5] This force is one that mechanical engineers and physicists are not used to dealing with because, at the larger scale that humankind tends to think of things, this force is not one that needs to be taken into account. People think of gravity, inertia, and other physics based forces that act on us all the time, however at the nanoscale those forces are mostly “negligible”. [5]

In order for nanomachines to be recreated by humans, either there will need to be discoveries that allow us to understand how to “exploit” Brownian motion as nature does or find a way to work around it by using materials that are rigid enough to stand up to these forces. The way that nature has been able to exploit Brownian motion is through self-assembly. This force pushes and pulls all of the proteins and amino acids around in our bodies and sticks them together in all sorts of combinations. The combinations that do not work separate and continue with their random attachment however, the combinations that do work produce things like ATP synthase. [5] Through this process nature has been able to make a nanomachine that is 95% efficient, which is a feat that humans have not been able to accomplish yet. This is all because nature does not try to work around the forces; it uses them at its advantage.

Growing cells in culture to take advantage of their internal chemical synthesis machinery can be considered a form of nanotechnology but this machinery has also been manipulated outside of living cells. [7]

Related Research Articles

<span class="mw-page-title-main">Molecular nanotechnology</span> Technology

Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products, this advanced form of nanotechnology would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology was defined by the National Nanotechnology Initiative as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. The definition of nanotechnology is inclusive of all types of research and technologies that deal with these special properties. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. An earlier description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

<span class="mw-page-title-main">There's Plenty of Room at the Bottom</span> 1959 lecture by Richard Feynman

"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibility of direct manipulation of individual atoms as a more robust form of synthetic chemistry than those used at the time. Although versions of the talk were reprinted in a few popular magazines, it went largely unnoticed until the 1980s.

<span class="mw-page-title-main">Molecular assembler</span> Proposed nanotechnological device

A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.

<span class="mw-page-title-main">Brownian motor</span> Nanoscale machine

Brownian motors are nanoscale or molecular machines that use chemical reactions to generate directed motion in space. The theory behind Brownian motors relies on the phenomenon of Brownian motion, random motion of particles suspended in a fluid resulting from their collision with the fast-moving molecules in the fluid.

<span class="mw-page-title-main">Nanorobotics</span> Emerging technology field

Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.

Femtotechnology is a term used in reference to the hypothetical manipulation of matter on the scale of a femtometer, or 10−15 m. This is three orders of magnitude lower than picotechnology, at the scale of 10−12 m, and six orders of magnitude lower than nanotechnology, at the scale of 10−9 m.

<span class="mw-page-title-main">Nanobiotechnology</span> Intersection of nanotechnology and biology

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

<span class="mw-page-title-main">Molecular motor</span> Biological molecular machines

Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment in which the fluctuations due to thermal noise are significant.

The use of nanotechnology in fiction has attracted scholarly attention. The first use of the distinguishing concepts of nanotechnology was "There's Plenty of Room at the Bottom", a talk given by physicist Richard Feynman in 1959. K. Eric Drexler's 1986 book Engines of Creation introduced the general public to the concept of nanotechnology. Since then, nanotechnology has been used frequently in a diverse range of fiction, often as a justification for unusual or far-fetched occurrences featured in speculative fiction.

The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.

<span class="mw-page-title-main">Molecular biophysics</span> Interdisciplinary research area

Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.

<span class="mw-page-title-main">Molecular propeller</span>

Molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers: it has several molecular-scale blades attached at a certain pitch angle around the circumference of a shaft, aligned along the rotational axis.

The following outline is provided as an overview of and topical guide to nanotechnology:

<span class="mw-page-title-main">Nanomechanics</span>

Nanomechanics is a branch of nanoscience studying fundamental mechanical properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. As an area of nanoscience, nanomechanics provides a scientific foundation of nanotechnology.

In 2007, productive nanosystems were defined as functional nanoscale systems that make atomically-specified structures and devices under programmatic control, i.e., performing atomically precise manufacturing. As of 2015, such devices were only hypothetical, and productive nanosystems represented a more advanced approach among several to perform Atomically Precise Manufacturing. A workshop on Integrated Nanosystems for Atomically Precise Manufacturing was held by the Department of Energy in 2015.

<span class="mw-page-title-main">Drexler–Smalley debate on molecular nanotechnology</span>

The Drexler–Smalley debate on molecular nanotechnology was a public dispute between K. Eric Drexler, the originator of the conceptual basis of molecular nanotechnology, and Richard Smalley, a recipient of the 1996 Nobel prize in Chemistry for the discovery of the nanomaterial buckminsterfullerene. The dispute was about the feasibility of constructing molecular assemblers, which are molecular machines which could robotically assemble molecular materials and devices by manipulating individual atoms or molecules. The concept of molecular assemblers was central to Drexler's conception of molecular nanotechnology, but Smalley argued that fundamental physical principles would prevent them from ever being possible. The two also traded accusations that the other's conception of nanotechnology was harmful to public perception of the field and threatened continued public support for nanotechnology research.

A nanofoundry is considered to be a foundry that performs on a scale similar to nanotechnology. This concept makes it similar to the role that the nanofactory would play because it is considered to be a factory that operates on that same scale model. The closest thing that nature has to a nanofoundry is the simple biological cell.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. 1 2 3 Contemporary Tech Archived July 20, 2011, at the Wayback Machine
  2. 1 2 ; Book by William Illsey Atkinson "Nanocosm: Nanotechnology and the Big Changes Coming from the Inconceivably Small" 2003 [ dead link ]
  3. 1 2 3 "Nanotechnology: radical new science or plus ça change?—the debate" (PDF). Archived from the original (PDF) on January 20, 2010. Retrieved March 14, 2023.
  4. 1 2 3 4 5 Madou, Marc (13 December 2005). "Nanotechnology:dry versus wet engineering?". Analytical and Bioanalytical Chemistry. 4. 384 (6): 4–6. doi:10.1007/s00216-005-0182-7. PMID   16344928. S2CID   5624780.
  5. 1 2 3 4 5 6 7 8 9 Scott, Faye; David Forrest; John Storrs-Hall; Jack Stilgoe (2005). "Nanotechnology:radical new science or plus ca change?--the debate". Nanotechnology Perceptions: 119–131.
  6. 1 2 3 4 Bergman, Jerry (1999). "ATP: The Perfect Energy Currency for the Cell". Creation Research Society Quarterly. 1. 36: 1–10.
  7. In Vitro Translation: The Basics