Yinotheria

Last updated

Yinotheria
Temporal range: Middle Jurassic–Holocene
O
S
D
C
P
T
J
K
Pg
N
(possible Late Triassic record [1] )
Ambondro lingual.jpg
Ambondro mahabo jaw fragment
Shuotherium dongi.jpg
Shuotherium dongi jawbone
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Subclass: Yinotheria
Chow and Rich, 1982 [2]
Subgroups

Yinotheria is a proposed basal subclass clade of crown mammals uniting the Shuotheriidae, an extinct group of mammals from the Jurassic of Eurasia, with Australosphenida, a group of mammals known from the Jurassic to Cretaceous of Gondwana, which possibly include living monotremes. [3] Today, there are only five surviving species of monotremes which live in Australia and New Guinea, consisting of the platypus and four species of echidna. Fossils of yinotheres have been found in Britain, China, Russia, Madagascar and Argentina. Contrary to other known crown mammals, they retained postdentary bones as shown by the presence of a postdentary trough. The extant members (monotremes) developed the mammalian middle ear independently.

Contents

Other studies have rejected Yinotheria, finding Shuotheriidae to be unrelated to Australosphenida and outside crown Mammalia. [4]

Evolutionary history

According to genetic studies, Yinotheria diverged from other mammals around 220 to 210 million years ago, at some point in the Triassic or Early Jurassic. [1] [5] The oldest-known fossils are a bit younger, dating around 168 to 163 million years in the Middle Jurassic. These fossils are the genera Pseudotribos of China, [3] Shuotherium of both China and the United Kingdom, Itatodon of Siberia and Paritatodon of Kyrgyzstan and the UK. [6] These, which belong to the family Shuotheriidae, are the only known northern hemisphere group of yinotherians.

The infraclass Australosphenida appeared around the same time as Shuotheriidae. The family Henosferidae, comprising the genera Henosferus , Ambondro , and Asfaltomylos , has been found in the southern hemisphere at locations in Argentina and Madagascar. This suggests that this family could have been more widespread and diverse in Gondwana during that time; however, due to their fragile state, some fossils might have been destroyed by geological events.

The family Ausktribosphenidae and the first monotremes appeared in the Early Cretaceous, in the region that is now known as Australasia. Despite being found in the same region of the world and in the same time period, recent work has found that the older Henosferidae is the sister taxon to Monotremata, with Ausktribosphenidae being the next sister taxa in Australosphenida. [7] Ausktribosphenidae includes the genera Bishops and Ausktribosphenos .

Some 110-million-year-old monotreme fossil jaw fragments were found at Lightning Ridge, New South Wales. These fragments, from the species Steropodon galmani , are the oldest known monotreme fossils. Fossils from the genera Kollikodon , Teinolophos , and Obdurodon have also been discovered. In 1991, a fossil tooth of a 61-million-year-old platypus was found in southern Argentina (since named Monotrematum, though it is now considered to be an Obdurodon species). (See fossil monotremes below.) Molecular clock and fossil dating give a wide range of dates for the split between echidnas and platypuses, with one survey putting the split at 19 to 48 million years ago, [8] but another putting it at 17 to 89 million years ago. [9] All these dates are more recent than the oldest known platypus fossils, suggesting that both the short-beaked and long-beaked echidna species are derived from a platypus-like ancestor.

Systematics

History of classification

Prototheria

Originally, monotremes were classified as a subclass of mammals known as Prototheria. The names Prototheria, Metatheria and Eutheria (meaning "first beasts", "changed beasts", and "true beasts", respectively) refer to the three mammalian groupings that have living representatives. Each of the three may be defined as a total clade containing a living crown-group (respectively, the Monotremata, Marsupialia and Placentalia) plus any fossil species that are more closely related to that crown-group than to any other living animals.

The threefold division of living mammals into monotremes, marsupials and placentals was already well established when Thomas Huxley proposed the names Metatheria and Eutheria to incorporate the two latter groups in 1880. Initially treated as subclasses, Metatheria and Eutheria are by convention now grouped as infraclasses of the subclass Theria, and in more recent proposals have been demoted further (to cohorts or even magnorders), as cladistic reappraisals of the relationships between living and fossil mammals have suggested that the Theria itself should be reduced in rank. [10]

Prototheria, on the other hand, was generally recognised as a subclass until quite recently, on the basis of a hypothesis that defined the group by two supposed synapomorphies: (1) formation of the side wall of the braincase from a bone called the anterior lamina, contrasting with the alisphenoid in therians; and (2) a linear alignment of molar cusps, contrasting with a triangular arrangement in therians. These characters appeared to unite monotremes with a range of Mesozoic fossil orders (Morganucodonta, Triconodonta, Docodonta and Multituberculata) in a broader clade for which the name Prototheria was retained, and of which monotremes were thought to be only the last surviving branch (Benton 2005: 300, 306).

Australosphenida hypothesis and Yinotheria

The evidence that was held to support Prototheria is now universally discounted. In the first place, the examination of embryos has revealed that the development of the braincase wall is essentially identical in therians and in 'prototherians': the anterior lamina simply fuses with the alisphenoid in therians, and therefore the 'prototherian' condition of the braincase wall is primitive for all mammals, while the therian condition can be derived from it. Additionally, the linear alignment of molar cusps is also primitive for all mammals. Therefore, neither of these states can supply a uniquely shared derived character that would support a 'prototherian' grouping of orders in contradistinction to Theria (Kemp 1983).

In a further reappraisal, the molars of embryonic and fossil monotremes (living monotreme adults are toothless) appear to demonstrate an ancestral pattern of cusps that is similar to the triangular arrangement observed in therians. Some peculiarities of this dentition support an alternative grouping of monotremes with certain recently discovered fossil forms into a proposed new clade known as the Australosphenida, and also suggest that the triangular array of cusps may have evolved independently in australosphenidans and therians (Luo et al. 2001, 2002). Australosphenida is characterized by the shared presence of a cingulum on the outer front corner of the lower molars, a short and broad talonid, a relatively low trigonid, and a triangulated last lower premolar. [11]

The Australosphenida hypothesis remains controversial; for example, lingual cingula seem to be a presence in various non-australosphenidan mammals [12] and some work has shown the possibility of Eutheria being the sister group to Australosphenida, without monotremes. [13] As a result, some taxonomists (e.g. McKenna & Bell 1997) prefer to maintain the name Prototheria as a fitting contrast to the other group of living mammals, the Theria. In theory, the Prototheria is taxonomically redundant, since Monotremata is currently the only order that can still be confidently included, but its retention might be justified if new fossil evidence, or a re-examination of known fossils, enables extinct relatives of the monotremes to be identified and placed within a wider grouping.

When systematic work was performed, it was also found that Australosphenida is the sister taxon to Shuotheriidae, an obscure group of Mesozoic mammals that were found in what is now China. Kielan-Jaworowska, Cifelli & Luo 2002 had this to say regarding the Shuotheriidae, particularly Shuotherium: [14]

In our view, the most compelling evidence as to the affinities of Shuotherium lies in the structure of the last premolar, which shares striking similarities to that of Australosphenida

Lower molar structure of Shuotherium and Australosphenida is obviously quite different, and for this reason we do not place Shuotherium within this Gondwanan clade. Based on the limited evidence available, however, we suggest that Shuotherium is a viable sister-taxon to Australosphenida.

Yinotheria is named for this grouping. [3] [15]

Other scholars have rejected Yinotheria, finding instead that Shuotheriidae is closely related to Docodonta outside crown Mammalia. [4]

Taxonomy

In comparison to Metatheria and Eutheria, where there seems to be a better understanding on the relationships among taxa with substantial fossil evidence, Yinotheria has few fossils; mostly consisting of (with few exceptions) the jawbones and teeth. In addition, the group seems not to have been as diverse in their evolutionary history, in comparison to members of both Metatheria and Eutheria. [16] Future analysis and better fossil remains could affect the membership of Yinotheria as well as rearranging and revising the relationships of stem-monotremes and crowned monotremes.

Phylogeny

Below is a simplified tree on Averianov et al., 2014 [7] after Woodburn, 2003 [17] and Ashwell, 2013 [16]

Yinotheria

Related Research Articles

<span class="mw-page-title-main">Echidna</span> Family of mammals

Echidnas, sometimes known as spiny anteaters, are quill-covered monotremes belonging to the family Tachyglossidae, living in Australia and New Guinea. The four extant species of echidnas and the platypus are the only living mammals that lay eggs and the only surviving members of the order Monotremata. The diet of some species consists of ants and termites, but they are not closely related to the American true anteaters or to hedgehogs. Their young are called puggles.

<span class="mw-page-title-main">Ornithorhynchidae</span> Family of monotremes

The Ornithorhynchidae are one of the two extant families in the order Monotremata, and contain the platypus and its extinct relatives. The other family is the Tachyglossidae, or echidnas. Within the Ornithorhynchidae are the genera Monotrematum, Obdurodon, and Ornithorhynchus:

<span class="mw-page-title-main">Prototheria</span> Subclass of mammalia

Prototheria is an obsolete subclass of mammals which includes the living Monotremata and to which a variety of extinct groups, including Morganucodonta, Docodonta, Triconodonta and Multituberculata, have also been assigned. It is today no longer considered a valid grouping, but rather a paraphyletic evolutionary grade of basal mammals and mammaliaform cynodonts.

<span class="mw-page-title-main">Theria</span> Subclass of mammals in the clade Theriiformes

Theria is a subclass of mammals amongst the Theriiformes. Theria includes the eutherians and the metatherians but excludes the egg-laying monotremes and various extinct mammals evolving prior to the common ancestor of placentals and marsupials.

<i>Steropodon</i> Extinct genus of monotremes

Steropodon is a genus of prehistoric platypus-like monotreme, or egg-laying mammal. It contains a single species, Steropodon galmani, that lived about 105 to 93.3 million years ago (mya) during the Cretaceous period, from early to middle Cenomanian. It is one of the oldest monotremes discovered, and is one of the oldest Australian mammal discoveries.

Teinolophos is a prehistoric species of monotreme, or egg-laying mammal, from the Teinolophidae. It is known from four specimens, each consisting of a partial lower jawbone collected from the Wonthaggi Formation at Flat Rocks, Victoria, Australia. It lived during the late Barremian age of the Lower Cretaceous.

<span class="mw-page-title-main">Tribosphenida</span> Infralegion of mammals

Tribosphenida is a group (infralegion) of mammals that includes the ancestor of Hypomylos, Aegialodontia and Theria. It belongs to the group Zatheria. The current definition of Tribosphenida is more or less synonymous with Boreosphenida.

<i>Akidolestes</i> Extinct genus of mammals

Akidolestes is an extinct genus of mammals of the family Spalacotheriidae, a group of mammals related to therians.

<span class="mw-page-title-main">Mammaliaformes</span> Clade of mammals and extinct relatives

Mammaliaformes is a clade that contains the crown group mammals and their closest extinct relatives; the group radiated from earlier probainognathian cynodonts. It is defined as the clade originating from the most recent common ancestor of Morganucodonta and the crown group mammals; the latter is the clade originating with the most recent common ancestor of extant Monotremata, Marsupialia, and Placentalia. Besides Morganucodonta and the crown group mammals, Mammaliaformes includes Docodonta and Hadrocodium as well as the Triassic Tikitherium, the earliest known member of the group.

<span class="mw-page-title-main">Australosphenida</span> Subclass of mammals

The Australosphenida are a clade of mammals, containing mammals with tribosphenic molars, known from the Jurassic to Mid-Cretaceous of Gondwana. Although they have often been suggested to have acquired tribosphenic molars independently from those of Tribosphenida, this has been disputed. Fossils of australosphenidans have been found from the Jurassic of Madagascar and Argentina, and Cretaceous of Australia and Argentina. Monotremes have also been considered a part of this group in many studies, but this is also disputed.

<i>Megalibgwilia</i> Extinct genus of monotremes

Megalibgwilia is a genus of echidna known only from Australian fossils that incorporates the oldest-known echidna species. The genus ranged from the Miocene until the late Pleistocene, becoming extinct about 50,000 years ago. Megalibgwilia species were more widespread in warmer and moist climates. Their extinction can be attributed to increasing aridification in Southern Australia.

<span class="mw-page-title-main">Eutriconodonta</span> Extinct order of mammals

Eutriconodonta is an order of early mammals. Eutriconodonts existed in Asia, Africa, Europe, North and South America during the Jurassic and the Cretaceous periods. The order was named by Kermack et al. in 1973 as a replacement name for the paraphyletic Triconodonta.

<span class="mw-page-title-main">Trechnotheria</span> Clade of mammals

Trechnotheria is a group of mammals that includes the therians and some fossil mammals from the Mesozoic Era. It includes both the extinct symmetrodonts and the living Cladotheria.

<span class="mw-page-title-main">Amphitheriidae</span> Extinct family of mammals

Amphitheriidae is a family of Mesozoic mammals restricted to the Middle Jurassic of Britain, with indeterminate members also possibly known from the equivalently aged Itat Formation in Siberia and the Anoual Formation of Morocco. They were members of Cladotheria, more derived than members of Dryolestida, and forming a close relationship with Peramuridae. Amphitheriidae is the only family of the order Amphitheriida.

Shuotherium is a fossil mammaliaform known from Middle-Late Jurassic of the Forest Marble Formation of England, and the Shaximiao Formation of Sichuan, China.

<span class="mw-page-title-main">Shuotheriidae</span> Extinct family of mammaliaforms

Shuotheriidae is a small family of Jurassic mammaliaforms whose remains are found in China, England and possibly Russia. They have been proposed to be close relatives of Australosphenida, together forming the clade Yinotheria. However, some studies suggest shuotheres are closer to therians than to monotremes, or that australosphenidans and therians are more closely related to each other than either are to shuotheres, with a 2024 study suggesting that shuotheriids were closely related to Docodonta outside of the Mammalia crown group.

<span class="mw-page-title-main">Monotreme</span> Order of egg-laying mammals

Monotremes are mammals of the order Monotremata. They are the only known group of living mammals that lay eggs, rather than bearing live young. The extant monotreme species are the platypus and the four species of echidnas. Monotremes are typified by structural differences in their brains, jaws, digestive tract, reproductive tract, and other body parts, compared to the more common mammalian types. Although they are different from almost all mammals in that they lay eggs, like all mammals, the female monotremes nurse their young with milk.

<i>Ambondro mahabo</i> Species of small mammal from the middle Jurassic of Madagascar

Ambondro mahabo is a mammal from the Middle Jurassic (Bathonian) Isalo III Formation of Madagascar. The only described species of the genus Ambondro, it is known from a fragmentary lower jaw with three teeth, interpreted as the last premolar and the first two molars. The premolar consists of a central cusp with one or two smaller cusps and a cingulum (shelf) on the inner, or lingual, side of the tooth. The molars also have such a lingual cingulum. They consist of two groups of cusps: a trigonid of three cusps at the front and a talonid with a main cusp, a smaller cusp, and a crest at the back. Features of the talonid suggest that Ambondro had tribosphenic molars, the basic arrangement of molar features also present in marsupial and placental mammals. It is the oldest known mammal with putatively tribosphenic teeth; at the time of its discovery it antedated the second oldest example by about 25 million years.

Several mammals are known from the Mesozoic of Madagascar. The Bathonian Ambondro, known from a piece of jaw with three teeth, is the earliest known mammal with molars showing the modern, tribosphenic pattern that is characteristic of marsupial and placental mammals. Interpretations of its affinities have differed; one proposal places it in a group known as Australosphenida with other Mesozoic tribosphenic mammals from the southern continents (Gondwana) as well as the monotremes, while others favor closer affinities with northern (Laurasian) tribosphenic mammals or specifically with placentals. At least five species are known from the Maastrichtian, including a yet undescribed species known from a nearly complete skeleton that may represent a completely new group of mammals. The gondwanathere Lavanify, known from two teeth, is most closely related to other gondwanatheres found in India and Argentina. Two other teeth may represent another gondwanathere or a different kind of mammal. One molar fragment is one of the few known remains of a multituberculate mammal from Gondwana and another has been interpreted as either a marsupial or a placental.

Marsupionta is a hypothesised subclass within the Mammalia group. The existence of Marsupionta is a postulation by some researchers as a category devolving upon a notional unification between marsupials with the egg-laying monotremes. Under this suggested classification, placental mammals would be the sister subclass to Marsupionta. The Marsupionta hypothesis was proposed in 1947 by W.K. Gregory and has since been the subject of multiple studies. This merging of marsupials and monotremes into the hypothesized subclass of Marsupionta is contrary to the widespread belief that pouch and placental mammals share the common subclass Theria that excludes monotremes.

References

  1. 1 2 Hugall, A.F.; et al. (2007). "Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1". Syst. Biol. 56 (4): 543–63. doi: 10.1080/10635150701477825 . hdl: 2440/44140 . PMID   17654361.
  2. Chow, M.; Rich, T. H. (1982). "Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China". Australian Mammalogy. 5 (2): 127–42. doi:10.1071/AM82013. S2CID   254714864.
  3. 1 2 3 Luo, Zhe-Xi; Ji, Qiang; Yuan, Chong-Xi (2007). "Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals". Nature. 450 (7166): 93–97. Bibcode:2007Natur.450...93L. doi:10.1038/nature06221. PMID   17972884. S2CID   609206 . Retrieved 26 December 2014.
  4. 1 2 Mao, Fangyuan; Li, Zhiyu; Wang, Zhili; Zhang, Chi; Rich, Thomas; Vickers-Rich, Patricia; Meng, Jin (2024-04-03). "Jurassic shuotheriids show earliest dental diversification of mammaliaforms". Nature. doi:10.1038/s41586-024-07258-7. ISSN   0028-0836.
  5. "The Timetree of Life - Mammals (Mammalia)" (PDF). Archived from the original (PDF) on 2013-10-31. Retrieved 2023-08-31.
  6. Wang, Y.-Q. and Li, C.-K. 2016. Reconsideration of the systematic position of the Middle Jurassic mammaliaforms Itatodon and Paritatodon. Palaeontologia Polonica 67, 249–256.
  7. 1 2 Averianov et al., 2014
  8. Phillips, MJ; Bennett, TH; Lee, MS. (2009). "Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas". PNAS. 106 (40): 17089–17094. Bibcode:2009PNAS..10617089P. doi: 10.1073/pnas.0904649106 . PMC   2761324 . PMID   19805098.
  9. "The Timetree of Life - Monotremes (Prototheria)" (PDF). Archived from the original (PDF) on 2013-10-31. Retrieved 2023-08-31.
  10. Marsupialia and Eutheria/Placentalia appear as cohorts in McKenna & Bell 1997 and in Benton 2005, with Theria ranked as a supercohort or an infralegion, respectively.
  11. Luo et al., 2001, pp. 53, 56
  12. Sigogneau-Russell et al., 2001, p. 146
  13. Woodburne, 2003, fig. 5; Woodburne et al., 2003, fig. 3
  14. Dykes: Shuoterium
  15. Kielan-Jaworowska, Cifelli & Luo 2004 , pp. 214–215, 529
  16. 1 2 3 4 5 6 7 Ashwell, 2013
  17. 1 2 Woodburne, 2003
  18. Pridmore, Peter A.; et al. (December 2005), "A Tachyglossid-Like Humerus from the Early Cretaceous of South-Eastern Australia", Journal of Mammalian Evolution, 12 (3–4): 359–378, doi:10.1007/s10914-005-6959-9, S2CID   22931124
  19. Phillips, Matthew J.; et al. (2010), "Reply to Camens: How recently did modern monotremes diversify?", Proc Natl Acad Sci USA, 107:E13 (4): E13, Bibcode:2010PNAS..107E..13P, doi: 10.1073/pnas.0913152107 , PMC   2824408

Bibliography