Zone bit recording

Last updated

In computer storage, zone bit recording (ZBR) is a method used by disk drives to optimise the tracks for increased data capacity. It does this by placing more sectors per zone on outer tracks than on inner tracks. This contrasts with other approaches, such as constant angular velocity (CAV) -drives, where the number of sectors per track are the same. On a disk consisting of roughly concentric tracks – whether realized as separate circular tracks or as a single spiral track – the physical track length (circumference) is increased as it gets farther from the centre hub.

Contents

Physical layout of sectors in a zone-bit disc: As distance from the centre increases, the number of sectors in a given angle increases from one (red) to two (green) to four (grey). DiskStructure.svg
Physical layout of sectors in a zone-bit disc: As distance from the centre increases, the number of sectors in a given angle increases from one (red) to two (green) to four (grey).

The inner tracks are packed as densely as the particular drive's technology allows. The packing of the rest of the disks is changed depending on the type of disk. Zone recording was pioneered and patented by Chuck Peddle in 1961 while working for General Electric. [1]

With a CAV-drive the data on the outer tracks are the same angular width of those in the centre, and so less densely packed. Using ZBR instead, the inner zoning is used to set the read/write rate, which is the same for other tracks. This permits the drive to have more bits stored in the outside tracks compared to the inner ones. Storing more bits per track equates to achieving a higher total data capacity on the same disk area. [2]

However, ZBR influences other performance characteristics of the hard disk. In the outermost tracks, data will have the highest data transfer rate. Since both hard disks and floppy disks typically number their tracks beginning at the outer edge and continuing inward, and since operating systems typically fill the lowest-numbered tracks first, this is where the operating system typically stores its own files during its initial installation onto an empty drive. Testing disk drives when they are new or empty after defragmenting them with some benchmarking applications will often show their highest performance. After some time, when more data are stored in the inner tracks, the average data transfer rate will drop, because the transfer rate in the inner zones is slower; this, combined with the head's longer stroke and possible fragmentation, may give the impression of the disk drive slowing down over time. [2]

Some other ZBR drives, such as the 800 kilobyte 3.5" floppy drives in the Apple IIGS and older Macintosh computers, don't change the data rate but rather spin the medium slower when reading or writing outer tracks, thus approximating the performance of constant linear velocity drives. [3]

Products that use ZBR

See also

Related Research Articles

<span class="mw-page-title-main">Disk storage</span> General category of storage mechanisms

Disk storage is a general category of storage mechanisms where data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one or more rotating disks. A disk drive is a device implementing such a storage mechanism. Notable types are today's hard disk drives (HDD) containing one or more non-removable rigid platters, the floppy disk drive (FDD) and its removable floppy disk, and various optical disc drives (ODD) and associated optical disc media.

<span class="mw-page-title-main">Floppy disk</span> Removable disk storage medium

A floppy disk or floppy diskette is a type of disk storage composed of a thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive (FDD) connected to or inside a computer or other device.

<span class="mw-page-title-main">SuperDisk</span> Storage medium from Imation

The SuperDisk LS-120 is a high-speed, high-capacity alternative to the 90 mm (3.5 in), 1.44 MB floppy disk. The SuperDisk hardware was created by 3M's storage products group Imation in 1997, with manufacturing chiefly by Matsushita.

In computer science, group coded recording or group code recording (GCR) refers to several distinct but related encoding methods for representing data on magnetic media. The first, used in 6250 bpi magnetic tape since 1973, is an error-correcting code combined with a run-length limited (RLL) encoding scheme, belonging into the group of modulation codes. The others are different mainframe hard disk as well as floppy disk encoding methods used in some microcomputers until the late 1980s. GCR is a modified form of a NRZI code, but necessarily with a higher transition density.

Sirius Systems Technology was a personal computer manufacturer in Scotts Valley, California. It was founded in 1980 by Chuck Peddle and Chris Fish, formerly of MOS Technology and capitalized by Walter Kidde Inc. In late 1982 Sirius acquired Victor Business Systems from Kidde and changed its name to Victor Technologies. It made the Victor/Sirius series of personal computers. The company made a public stock offering in the first half of 1983, but went into Chapter 11 protection from bankruptcy before the end of 1984. The company's assets were acquired by Datatronic AB, a Swedish software/hardware distribution company headed by Mats Gabrielsson. Gabrielsson signed a distribution deal with Kyocera, which began to supply PC clones to Victor.

<span class="mw-page-title-main">Constant angular velocity</span>

In optical storage, constant angular velocity (CAV) is a qualifier for the rated speed of any disc containing information, and may also be applied to the writing speed of recordable discs. A drive or disc operating in CAV mode maintains a constant angular velocity, contrasted with a constant linear velocity (CLV).

<span class="mw-page-title-main">Constant linear velocity</span>

In optical storage, constant linear velocity (CLV) is a qualifier for the rated speed of an optical disc drive, and may also be applied to the writing speed of recordable discs. CLV implies that the angular velocity varies during an operation, as contrasted with CAV modes. The concept of constant linear velocity was patented in 1886 by phonograph pioneers Chichester Bell and Charles Tainter.

<span class="mw-page-title-main">Revolutions per minute</span> Unit of rotational speed

Revolutions per minute is a unit of rotational speed for rotating machines. One revolution per minute is equivalent to 1/60 hertz.

<span class="mw-page-title-main">Cylinder-head-sector</span> Historical method for giving addresses to physical data blocks on hard disk drives

Cylinder-head-sector (CHS) is an early method for giving addresses to each physical block of data on a hard disk drive.

<span class="mw-page-title-main">Commodore 4040</span>

The Commodore 4040 is the replacement for the previous models 2040 (U.S.) and 3040 (Europe). It's a dual-drive 5¼" floppy disk subsystem for Commodore Business Machines. It uses a wide-case form, and uses the parallel IEEE-488 interface common to Commodore PET/CBM computers.

Floppy disk format and density refer to the logical and physical layout of data stored on a floppy disk. Since their introduction, there have been many popular and rare floppy disk types, densities, and formats used in computing, leading to much confusion over their differences. In the early 2000s, most floppy disk types and formats became obsolete, leaving the 3+12-inch disk, using an IBM PC compatible format of 1440 KB, as the only remaining popular format.

Write precompensation is a technical aspect of the design of hard disks, floppy disks and other digital magnetic recording devices. It is the modification of the analog write signal, shifting transitions somewhat in time, in such a way as to ensure that the signal that will later be read back will be as close as possible to the unmodified write signal. It is required because of the non-linear properties of magnetic recording surfaces.

<span class="mw-page-title-main">Disk sector</span> Logical or physical division of storage media

In computer disk storage, a sector is a subdivision of a track on a magnetic disk or optical disc. For most disks, each sector stores a fixed amount of user-accessible data, traditionally 512 bytes for hard disk drives (HDDs) and 2048 bytes for CD-ROMs and DVD-ROMs. Newer HDDs and SSDs use 4096-byte (4 KiB) sectors, which are known as the Advanced Format (AF).

<span class="mw-page-title-main">Apple FileWare</span> Floppy drive by Apple

FileWare floppy disk drives and diskettes were designed by Apple Computer as a higher-performance alternative to the Disk II and Disk III floppy systems used on the Apple II and Apple III personal computers. The drive is named Apple 871 in service documentation, based on its approximate formatted storage capacity in kilobytes, but is most commonly known by their codename Twiggy, after the famously thin 1960s fashion model named Twiggy.

<span class="mw-page-title-main">History of the floppy disk</span>

A floppy disk is a disk storage medium composed of a disk of thin and flexible magnetic storage medium encased in a rectangular plastic carrier. It is read and written using a floppy disk drive (FDD). Floppy disks were an almost universal data format from the 1970s into the 1990s, used for primary data storage as well as for backup and data transfers between computers.

<span class="mw-page-title-main">CD-ROM</span> Pre-pressed compact disc containing computer data

A CD-ROM is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both computer data and audio with the latter capable of being played on a CD player, while data is only usable on a computer.

<span class="mw-page-title-main">Macintosh External Disk Drive</span> External floppy disk drive by Apple

The Macintosh External Disk Drive is the original model in a series of external 3+12-inch floppy disk drives manufactured and sold by Apple Computer exclusively for the Macintosh series of computers introduced in January 1984. Later, Apple would unify their external drives to work cross-platform between the Macintosh and Apple II product lines, dropping the name "Macintosh" from the drives. Though Apple had been producing external floppy disk drives prior to 1984, they were exclusively developed for the Apple II, III and Lisa computers using the industry standard 5+14-inch flexible disk format. The Macintosh external drives were the first to widely introduce Sony's new 3+12-inch rigid disk standard commercially and throughout their product line. Apple produced only one external 3+12-inch drive exclusively for use with the Apple II series called the Apple UniDisk 3.5.

<span class="mw-page-title-main">Floppy disk variants</span> Types of floppy disk formats

The floppy disk is a data storage and transfer medium that was ubiquitous from the mid-1970s well into the 2000s. Besides the 3½-inch and 5¼-inch formats used in IBM PC compatible systems, or the 8-inch format that preceded them, many proprietary floppy disk formats were developed, either using a different disk design or special layout and encoding methods for the data held on the disk.

Higher performance in hard disk drives comes from devices which have better performance characteristics. These performance characteristics can be grouped into two categories: access time and data transfer time .

References

  1. Computer Museum Oral History of Chuck Peddle on YouTube
  2. 1 2 "Zoned Bit Recording". Archived from the original on 2000-08-17. Retrieved 2011-07-18.
  3. "Working with Macintosh Floppy Disks in the New Millennium". Archived from the original on 2013-04-13. Retrieved 2013-04-18.
  4. "Chapter 7. Disk Drive Assembly". Victor 9000 Technical Reference Manual (PDF). Victor Business Products, Inc. June 1982. pp. 7–1..7–9. 710620. Archived (PDF) from the original on 2017-03-23. Retrieved 2017-03-23.
  5. Electronic Design, Volume 35, Issues 8-15. 1987.
  6. "Zoned bit recording Archived 2017-01-16 at the Wayback Machine ". National Semiconductors. 1989.
  7. example: "5K500.B SATA OEM Specification Revision 1.2" (PDF). Hitachi. 2009-03-17. p. 15. Archived from the original (PDF) on 2012-10-21. Retrieved 2011-07-29.