802.11 frame types

Last updated

In the IEEE 802.11 wireless LAN protocols (such as Wi-Fi), a MAC frame is constructed of common fields (which are present in all types of frames) and specific fields (present in certain cases, depending on the type and subtype specified in the first octet of the frame).

Contents

Generic 802.11 Frame 802.11 frame.png
Generic 802.11 Frame

The very first two octets transmitted by a station are the Frame Control. The first three subfields within the frame control and the last field (FCS) are always present in all types of 802.11 frames. These three subfields consist of two bits Protocol Version subfield, two bits Type subfield, and four bits Subtype subfield.

Frame control

802.11 Frame Control Field 802.11 Frame Control.png
802.11 Frame Control Field

The first three fields (Protocol Version, Type and Subtype) in the Frame Control field are always present. The fields, in their order of appearance in transmission, are:

  1. Protocol Version
  2. Type
  3. Subtype
  4. To-DS
  5. From-DS
  6. More-Fragments
  7. Retry
  8. Power Management
  9. More Data
  10. Protected Frame
  11. +HTC/Order

Protocol version subfield

The two-bit protocol version subfield is set to 0 for WLAN (PV0) and 1 for IEEE 802.11ah (PV1). The revision level is incremented only when there is a fundamental incompatibility between two versions of the standard. [1] [2] PV1 description is incorporated in the latest 802.11-2020 standard.

Types and subtypes

Various 802.11 frame types and subtypes
Type value

(bits 3–2)

Type

description

Subtype value

(bits 7–4)

Subtype description
00Management0000Association Request
00Management0001Association Response
00Management0010Reassociation Request
00Management0011Reassociation Response
00Management0100Probe Request
00Management0101Probe Response
00Management0110Timing Advertisement
00Management0111Reserved
00Management1000 Beacon
00Management1001ATIM
00Management1010Disassociation
00Management1011Authentication
00Management1100Deauthentication
00Management1101Action
00Management1110Action No Ack (NACK)
00Management1111Reserved
01Control0000–0001Reserved
01Control0010Trigger [3]
01Control0011TACK
01Control0100 Beamforming Report Poll
01Control0101 VHT/HE NDP Announcement
01Control0110Control Frame Extension
01Control0111Control Wrapper
01Control1000 Block Ack Request (BAR)
01Control1001 Block Ack (BA)
01Control1010 PS-Poll
01Control1011 RTS
01Control1100 CTS
01Control1101 ACK
01Control1110CF-End
01Control1111CF-End + CF-ACK
10Data0000Data
10Data0001–0011Reserved
10Data0100Null (no data)
10Data0101–0111Reserved
10Data1000 QoS Data
10Data1001QoS Data + CF-ACK
10Data1010QoS Data + CF-Poll
10Data1011QoS Data + CF-ACK + CF-Poll
10Data1100QoS Null (no data)
10Data1101Reserved
10Data1110QoS CF-Poll (no data)
10Data1111QoS CF-ACK + CF-Poll (no data)
11Extension0000 DMG Beacon
11Extension0001S1G Beacon
11Extension0010–1111Reserved

ToDS and FromDS

ToDS is one bit in length and set to 1 if destined to Distribution System, [4] while FromDS is a one-bit length that is set to 1 if originated from Distribution System. [4]

Retry

Set to 1 if the Data or Management frame is part retransmission of the earlier frame. This bit is reused for different purpose in Control frame.

Protected frame

Set to 1 if the Management Frame is protected by encryption as described in IEEE_802.11w-2009.

+HTC/order

It is one bit in length and is used for two purposes:

Related Research Articles

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

A MAC address is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or without a separator.

<span class="mw-page-title-main">Wireless LAN</span> Computer network that links devices using wireless communication within a limited area

A wireless LAN (WLAN) is a wireless computer network that links two or more devices using wireless communication to form a local area network (LAN) within a limited area such as a home, school, computer laboratory, campus, or office building. This gives users the ability to move around within the area and remain connected to the network. Through a gateway, a WLAN can also provide a connection to the wider Internet.

EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as voice over wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.11i-2004, or 802.11i for short, is an amendment to the original IEEE 802.11, implemented as Wi-Fi Protected Access II (WPA2). The draft standard was ratified on 24 June 2004. This standard specifies security mechanisms for wireless networks, replacing the short Authentication and privacy clause of the original standard with a detailed Security clause. In the process, the amendment deprecated broken Wired Equivalent Privacy (WEP), while it was later incorporated into the published IEEE 802.11-2007 standard.

Counter Mode Cipher Block Chaining Message Authentication Code Protocol or CCM mode Protocol (CCMP) is an encryption protocol designed for Wireless LAN products that implements the standards of the IEEE 802.11i amendment to the original IEEE 802.11 standard. CCMP is an enhanced data cryptographic encapsulation mechanism designed for data confidentiality and based upon the Counter Mode with CBC-MAC of the Advanced Encryption Standard (AES) standard. It was created to address the vulnerabilities presented by Wired Equivalent Privacy (WEP), a dated, insecure protocol.

<span class="mw-page-title-main">Beacon frame</span>

A beacon frame is a type of management frame in IEEE 802.11 WLANs. It contains information about the network. Beacon frames are transmitted periodically; they serve to announce the presence of a wireless LAN and to provide a timing signal to synchronise communications with the devices using the network. In an infrastructurebasic service set (BSS), beacon frames are transmitted by the access point (AP). In ad hoc (IBSS) networks, beacon generation is distributed among the stations. For the 2.4 GHz spectrum, when having more than 15 SSIDs on non-overlapping channels, beacon frames start to consume significant amount of air time and degrade performance even when most of the networks are idle.

IEEE 802.11w-2009 is an approved amendment to the IEEE 802.11 standard to increase the security of its management frames.

In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist. Many Gigabit Ethernet switches and Gigabit Ethernet network interface controllers and some Fast Ethernet switches and Fast Ethernet network interface cards can support jumbo frames.

<span class="mw-page-title-main">Token Ring</span> Technology for computer networking

Token Ring is a physical and data link layer computer networking technology used to build local area networks. It was introduced by IBM in 1984, and standardized in 1989 as IEEE 802.5. It uses a special three-byte frame called a token that is passed around a logical ring of workstations or servers. This token passing is a channel access method providing fair access for all stations, and eliminating the collisions of contention-based access methods.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

Frame aggregation is a feature that allows communicating on a shared link or channel, typically a TDM shared channel, with a minimum time slot that for efficiency reasons benefits from filling the time slot with data, i.e. sending two or more data frames in a single transmission. The feature is an important part of the IEEE 802.11e, 802.11n and 802.11ac wireless LAN standards that increases throughput with frame aggregation. The MoCA protocol used for communication over coaxial networks also implements frame aggregation for the same reason. In protocol standards and implementations, the frame aggregation is usually combined with segmentation and reassembly of frames so that the time slots can be filled to 100%. E.g., an aggregation MAC PDU can be filled with 3.5 frames to ensure the time slot is utilized to 100% and in the next time slot the rest of the fragmented frame is sent together with any additional complete frames.

Block acknowledgement (BA) was initially defined in IEEE 802.11e as an optional scheme to improve the MAC efficiency. 802.11n amendment ratified in 2009 enhances this BA mechanism then made it as mandatory to support by all 802.11n-capable devices.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.

Traffic indication map (TIM) is a structure used in 802.11 wireless network management frames.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.

In a WLAN, packets can be a stream of video, voice, or data, which each have different priorities to be served by an access point. The Traffic Identifier (TID) is an identifier used to classify a packet in Wireless LANs. When a base station receives an 802.11 frame with the TID set for audio, for example, the priority given is higher than a data frame.

References

  1. "802.11 frames : A starter guide to learn wireless sniffer traces". community.cisco.com. October 25, 2010. Retrieved February 20, 2019.
  2. 802.11 Working Group. "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications". 2016. New York, NY: IEEE: 638.{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: numeric names: authors list (link)
  3. LAN/MAN Standards Committee (February 9, 2021). IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN. New York, NY: IEEE Standards Association. p. 76. doi:10.1109/IEEESTD.2021.9442429. ISBN   978-1-5044-7390-3.
  4. 1 2 Rapp, Dale (May 17, 2014). "THE TO DS AND FROM DS FIELDS". DALESWIFISEC. Retrieved August 13, 2019.