Adherent point

Last updated

In mathematics, an adherent point (also closure point or point of closure or contact point) [1] of a subset of a topological space is a point in such that every neighbourhood of (or equivalently, every open neighborhood of ) contains at least one point of A point is an adherent point for if and only if is in the closure of thus

Contents

if and only if for all open subsets if

This definition differs from that of a limit point of a set, in that for a limit point it is required that every neighborhood of contains at least one point of different from Thus every limit point is an adherent point, but the converse is not true. An adherent point of is either a limit point of or an element of (or both). An adherent point which is not a limit point is an isolated point.

Intuitively, having an open set defined as the area within (but not including) some boundary, the adherent points of are those of including the boundary.

Examples and sufficient conditions

If is a non-empty subset of which is bounded above, then the supremum is adherent to In the interval is an adherent point that is not in the interval, with usual topology of

A subset of a metric space contains all of its adherent points if and only if is (sequentially) closed in

Adherent points and subspaces

Suppose and where is a topological subspace of (that is, is endowed with the subspace topology induced on it by ). Then is an adherent point of in if and only if is an adherent point of in

Proof

By assumption, and Assuming that let be a neighborhood of in so that will follow once it is shown that The set is a neighborhood of in (by definition of the subspace topology) so that implies that Thus as desired. For the converse, assume that and let be a neighborhood of in so that will follow once it is shown that By definition of the subspace topology, there exists a neighborhood of in such that Now implies that From it follows that and so as desired.

Consequently, is an adherent point of in if and only if this is true of in every (or alternatively, in some) topological superspace of

Adherent points and sequences

If is a subset of a topological space then the limit of a convergent sequence in does not necessarily belong to however it is always an adherent point of Let be such a sequence and let be its limit. Then by definition of limit, for all neighbourhoods of there exists such that for all In particular, and also so is an adherent point of In contrast to the previous example, the limit of a convergent sequence in is not necessarily a limit point of ; for example consider as a subset of Then the only sequence in is the constant sequence whose limit is but is not a limit point of it is only an adherent point of

See also

Notes

      Citations

      1. Steen, p. 5; Lipschutz, p. 69; Adamson, p. 15.

      Related Research Articles

      <span class="mw-page-title-main">Compact space</span> Type of mathematical space

      In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

      In mathematics, a continuous function is a function such that a continuous variation of the argument induces a continuous variation of the value of the function. This means there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

      In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space.

      In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

      In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

      <span class="mw-page-title-main">Open set</span> Basic subset of a topological space

      In mathematics, an open set is a generalization of an open interval in the real line.

      In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

      In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

      In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

      <span class="mw-page-title-main">Boundary (topology)</span> All points not part of the interior of a subset of a topological space

      In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, Metric Spaces by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defined as the intersection of a set with the closure of the border of its complement.

      In mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of with respect to the topology on also contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence in a topological space is a point such that, for every neighbourhood of there are infinitely many natural numbers such that This definition of a cluster or accumulation point of a sequence generalizes to nets and filters.

      In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

      In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

      In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

      In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

      In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.

      <span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

      In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting of open connected sets.

      In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

      In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

      In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

      References