Basis path testing

Last updated

In software engineering, basis path testing, or structured testing, [1] is a white box method for designing test cases. The method analyzes the control-flow graph of a program to find a set of linearly independent paths of execution. The method normally uses McCabe cyclomatic complexity to determine the number of linearly independent paths and then generates test cases for each path thus obtained. [2] Basis path testing guarantees complete branch coverage (all edges of the control-flow graph), but achieves that without covering all possible paths of the control-flow graph  the latter is usually too costly. [3] Basis path testing has been widely used and studied. [4]

Contents

See also

Related Research Articles

In computer science, test coverage is a measure used to describe the degree to which the source code of a program is executed when a particular test suite runs. A program with high test coverage, measured as a percentage, has had more of its source code executed during testing, which suggests it has a lower chance of containing undetected software bugs compared to a program with low test coverage. Many different metrics can be used to calculate test coverage; some of the most basic are the percentage of program subroutines and the percentage of program statements called during execution of the test suite.

Discrete mathematics Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus or Euclidean geometry. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

Control-flow graph graphical representation of a computer program or algorithm

In computer science, a control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution. The control-flow graph is due to Frances E. Allen, who notes that Reese T. Prosser used boolean connectivity matrices for flow analysis before.

A software metric is a standard of measure of a degree to which a software system or process possesses some property. Even if a metric is not a measurement, often the two terms are used as synonyms. Since quantitative measurements are essential in all sciences, there is a continuous effort by computer science practitioners and theoreticians to bring similar approaches to software development. The goal is obtaining objective, reproducible and quantifiable measurements, which may have numerous valuable applications in schedule and budget planning, cost estimation, quality assurance, testing, software debugging, software performance optimization, and optimal personnel task assignments.

Directed acyclic graph Directed graph with no directed cycles

In mathematics, particularly graph theory, and computer science, a directed acyclic graph is a directed graph with no directed cycles. That is, it consists of vertices and edges, with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions. DAGs have numerous scientific and computational applications, ranging from biology to sociology to computation (scheduling).

Graph drawing

Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics.

Time series Sequence of data points over time

In mathematics, a time series is a series of data points indexed in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average.

White-box testing is a method of software testing that tests internal structures or workings of an application, as opposed to its functionality. In white-box testing an internal perspective of the system, as well as programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the code and determine the expected outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit, integration and system levels of the software testing process. Although traditional testers tended to think of white-box testing as being done at the unit level, it is used for integration and system testing more frequently today. It can test paths within a unit, paths between units during integration, and between subsystems during a system–level test. Though this method of test design can uncover many errors or problems, it has the potential to miss unimplemented parts of the specification or missing requirements. Where white-box testing is design-driven, that is, driven exclusively by agreed specifications of how each component of software is required to behave then white-box test techniques can accomplish assessment for unimplemented or missing requirements.

Cyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative measure of the number of linearly independent paths through a program's source code. It was developed by Thomas J. McCabe, Sr. in 1976.

In the context of software engineering, software quality refers to two related but distinct notions:

In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots.

The structured program theorem, also called the Böhm–Jacopini theorem, is a result in programming language theory. It states that a class of control-flow graphs can compute any computable function if it combines subprograms in only three specific ways. These are

  1. Executing one subprogram, and then another subprogram (sequence)
  2. Executing one of two subprograms according to the value of a boolean expression (selection)
  3. Repeatedly executing a subprogram as long as a boolean expression is true (iteration)
Circuit rank

In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph. Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula

Essential complexity is a numerical measure defined by Thomas J. McCabe, Sr., in his highly cited, 1976 paper better known for introducing cyclomatic complexity. McCabe defined essential complexity as the cyclomatic complexity of the reduced CFG after iteratively replacing (reducing) all structured programming control structures, i.e. those having a single entry point and a single exit point with placeholder single statements.

Decision-to-decision path

A decision-to-decision path, or DD-path, is a path of execution between two decisions. More recent versions of the concept also include the decisions themselves in their own DD-paths.

A Software Defect Indicator is a pattern that can be found in source code that is strongly correlated with a software defect, an error or omission in the source code of a computer program that may cause it to malfunction. When inspecting the source code of computer programs, it is not always possible to identify defects directly, but there are often patterns, sometimes called anti-patterns, indicating that defects are present.

NDepend is a static analysis tool for .NET managed code. The tool supports a large number of code metrics that allow one to visualize dependencies using directed graphs and dependency matrix. The tool also performs code base snapshot comparisons, and validation of architectural and quality rules. User-defined rules can be written using LINQ queries. This feature is named CQLinq. The tool also comes with a large number of predefined CQLinq code rules. Code rules can be checked automatically in Visual Studio or during continuous integration.

Linear code sequence and jump (LCSAJ), in the broad sense, is a software analysis method used to identify structural units in code under test. Its primary use is with dynamic software analysis to help answer the question "How much testing is enough?". Dynamic software analysis is used to measure the quality and efficacy of software test data, where the quantification is performed in terms of structural units of the code under test. When used to quantify the structural units exercised by a given set of test data, dynamic analysis is also referred to as structural coverage analysis.

Database testing usually consists of a layered process, including the user interface (UI) layer, the business layer, the data access layer and the database itself. The UI layer deals with the interface design of the database, while the business layer includes databases supporting business strategies.

References

  1. Arthur H. Watson and Thomas J. McCabe (1996). "Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric" (PDF). NIST Special Publication 500-235.
  2. Linda Westfall (2008). The Certified Software Quality Engineer Handbook. ASQ Quality Press. pp. 436–437. ISBN   978-0-87389-730-3.
  3. Y.N. Srikant; Priti Shankar (2002). The Compiler Design Handbook: Optimizations and Machine Code Generation. CRC Press. p. 249. ISBN   978-1-4200-4057-9.
  4. Robert V. Binder (2000). Testing Object-oriented Systems: Models, Patterns, and Tools . Addison-Wesley Professional. p.  378. ISBN   978-0-201-80938-1.

Further reading