Bayesian vector autoregression

Last updated

In statistics and econometrics, Bayesian vector autoregression (BVAR) uses Bayesian methods to estimate a vector autoregression (VAR) model. BVAR differs with standard VAR models in that the model parameters are treated as random variables, with prior probabilities, rather than fixed values.

Contents

Vector autoregressions are flexible statistical models that typically include many free parameters. Given the limited length of standard macroeconomic datasets relative to the vast number of parameters available, Bayesian methods have become an increasingly popular way of dealing with the problem of over-parameterization. As the ratio of variables to observations increases, the role of prior probabilities becomes increasingly important. [1]

The general idea is to use informative priors to shrink the unrestricted model towards a parsimonious naïve benchmark, thereby reducing parameter uncertainty and improving forecast accuracy. [2]

A typical example is the shrinkage prior, proposed by Robert Litterman (1979) [3] [4] and subsequently developed by other researchers at University of Minnesota, [5] [6] (i.e. Sims C, 1989), which is known in the BVAR literature as the "Minnesota prior". The informativeness of the prior can be set by treating it as an additional parameter based on a hierarchical interpretation of the model. [7]

In particular, the Minnesota prior assumes that each variable follows a random walk process, possibly with drift, and therefore consists of a normal prior on a set of parameters with fixed and known covariance matrix, which will be estimated with one of three techniques: Univariate AR, Diagonal VAR, or Full VAR.

This type model can be estimated with Eviews, Stata, Python [8] or R [9] Statistical Packages.

Recent research has shown that Bayesian vector autoregression is an appropriate tool for modelling large data sets. [10]

See also

Related Research Articles

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials. More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution.

In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.

The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the integrated likelihood rather than the maximized likelihood. As such, both quantities only coincide under simple hypotheses. Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence in favor of a null hypothesis, rather than only allowing the null to be rejected or not rejected.

In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population. However, while problems associated with "mixture distributions" relate to deriving the properties of the overall population from those of the sub-populations, "mixture models" are used to make statistical inferences about the properties of the sub-populations given only observations on the pooled population, without sub-population identity information. Mixture models are used for clustering, under the name model-based clustering, and also for density estimation.

Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon. An econometric model can be derived from a deterministic economic model by allowing for uncertainty, or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory.

In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term ; thus the model is in the form of a stochastic difference equation which should not be confused with a differential equation. Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable.

In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. To better comprehend the data or to forecast upcoming series points, both of these models are fitted to time series data. ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean, where an initial differencing step can be applied one or more times to eliminate the non-stationarity of the mean function. When the seasonality shows in a time series, the seasonal-differencing could be applied to eliminate the seasonal component. Since the ARMA model, according to the Wold's decomposition theorem, is theoretically sufficient to describe a regular wide-sense stationary time series, we are motivated to make stationary a non-stationary time series, e.g., by using differencing, before we can use the ARMA model. Note that if the time series contains a predictable sub-process, the predictable component is treated as a non-zero-mean but periodic component in the ARIMA framework so that it is eliminated by the seasonal differencing.

<span class="mw-page-title-main">Granger causality</span> Statistical hypothesis test for forecasting

The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another, first proposed in 1969. Ordinarily, regressions reflect "mere" correlations, but Clive Granger argued that causality in economics could be tested for by measuring the ability to predict the future values of a time series using prior values of another time series. Since the question of "true causality" is deeply philosophical, and because of the post hoc ergo propter hoc fallacy of assuming that one thing preceding another can be used as a proof of causation, econometricians assert that the Granger test finds only "predictive causality". Using the term "causality" alone is a misnomer, as Granger-causality is better described as "precedence", or, as Granger himself later claimed in 1977, "temporally related". Rather than testing whether Xcauses Y, the Granger causality tests whether X forecastsY.

Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.

In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions.

<span class="mw-page-title-main">Christopher A. Sims</span> American econometrician and macroeconomist

Christopher Albert Sims is an American econometrician and macroeconomist. He is currently the John J.F. Sherrerd '52 University Professor of Economics at Princeton University. Together with Thomas Sargent, he won the Nobel Memorial Prize in Economic Sciences in 2011. The award cited their "empirical research on cause and effect in the macroeconomy".

RATS, an abbreviation of Regression Analysis of Time Series, is a statistical package for time series analysis and econometrics. RATS is developed and sold by Estima, Inc., located in Evanston, IL.

Bayesian econometrics is a branch of econometrics which applies Bayesian principles to economic modelling. Bayesianism is based on a degree-of-belief interpretation of probability, as opposed to a relative-frequency interpretation.

An error correction model (ECM) belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run common stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent variable returns to equilibrium after a change in other variables.

Nowcasting in economics is the prediction of the very recent past, the present, and the very near future state of an economic indicator. The term is a portmanteau of "now" and "forecasting" and originates in meteorology. Typical measures used to assess the state of an economy, such as gross domestic product (GDP) or inflation, are only determined after a delay and are subject to revision. In these cases, nowcasting such indicators can provide an estimate of the variables before the true data are known. Nowcasting models have been applied most notably in Central Banks, who use the estimates to monitor the state of the economy in real-time as a proxy for official measures.

Spike-and-slab regression is a type of Bayesian linear regression in which a particular hierarchical prior distribution for the regression coefficients is chosen such that only a subset of the possible regressors is retained. The technique is particularly useful when the number of possible predictors is larger than the number of observations. The idea of the spike-and-slab model was originally proposed by Mitchell & Beauchamp (1988). The approach was further significantly developed by Madigan & Raftery (1994) and George & McCulloch (1997). A recent and important contribution to this literature is Ishwaran & Rao (2005).

References

  1. Koop, G.; Korobilis, D. (2010). "Bayesian multivariate time series methods for empirical macroeconomics" (PDF). Foundations and Trends in Econometrics. 3 (4): 267–358. CiteSeerX   10.1.1.164.7962 . doi:10.1561/0800000013. SSRN   1514412.
  2. Karlsson, Sune (2012). Forecasting with Bayesian Vector Autoregression. Vol. 2 B. pp. 791–897. doi:10.1016/B978-0-444-62731-5.00015-4. ISBN   9780444627315.{{cite book}}: |journal= ignored (help)
  3. Litterman, R. (1979). "Techniques of forecasting using vector autoregressions". Federal Reserve Bank of Minneapolis Working Paper. 115: pdf.
  4. Litterman, R. (1984). "Specifying VAR's for macroeconomic forecasting". Federal Reserve Bank of Minneapolis Staff Report. 92.
  5. Doan, T.; Litterman, R.; Sims, C. (1984). "Forecasting and conditional projection using realistic prior distributions" (PDF). Econometric Reviews . 3: 1–100. doi:10.1080/07474938408800053.
  6. Sims, C. (1989). "A nine variable probabilistic macroeconomic forecasting model". Federal Reserve Bank of Minneapolis Discussion Paper. 14: pdf.
  7. Giannone, Domenico; Lenza, Michele; Primiceri, Giorgio (2014). "Prior Selection for Vector Autoregressions". Review of Economics and Statistics. 97 (2): 436–451. CiteSeerX   10.1.1.375.7244 . doi:10.1162/rest_a_00483.
  8. joergrieger/pybvar 2019: 'pybvar' is a package for bayesian vector autoregression in Python. This package is similar to bvars.
  9. Kuschnig N; Vashold L. BVAR: Bayesian Vector Autoregressions with Hierarchical Prior Selection in R
  10. Banbura, T.; Giannone, R.; Reichlin, L. (2010). "Large Bayesian vector auto regressions". Journal of Applied Econometrics . 25 (1): 71–92. doi:10.1002/jae.1137.

Further reading