Brookhaven National Laboratory

Last updated

Brookhaven National Laboratory
Brookhaven National Laboratory logo 2021.svg
High Flux Beam Reactor - Brookhaven (7494424838).jpg
View of Brookhaven National Laboratory campus, with the High Flux Beam Reactor in the foreground
Motto "Passion for discovery"
Established1947
Research typeNuclear and high-energy physics, materials science, nanomaterials, chemistry, energy, and environmental, biological, and climate sciences
Budget Over US$550 million (2015)
Director JoAnne L. Hewett
Staff 2,750
Location Upton, Suffolk County,
New York, United States
40°52′30″N72°52′37″W / 40.875°N 72.877°W / 40.875; -72.877
Campus 21 km2 (5,265 acres)
Operating agency
Brookhaven Science Associates, LLC
Website www.bnl.gov
Map
USA New York location map.svg
Red pog.svg
Location in New York

Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island a hamlet of the Town of Brookhaven. It was formally established in 1947 at the site of Camp Upton, a former U.S. Army base. Located approximately 60 miles east of New York City, it is managed by Stony Brook University and Battelle Memorial Institute.

Contents

Research at BNL includes nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider and National Synchrotron Light Source II. Seven Nobel Prizes have been awarded for work conducted at Brookhaven Lab. [1]

Overview

BNL operations are overseen by a Department of Energy Site office, is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. [2] The laboratory is guarded by a Department of Energy Protective Force, has a full service fire department, and has its own ZIP code (11973). In total, the lab spans a 5,265-acre (21 km2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service. [3]

Major programs

Location of Brookhaven National Laboratory relative to New York City Long Island Road Map.gif
Location of Brookhaven National Laboratory relative to New York City

Although originally conceived as a nuclear research facility, Brookhaven Lab's mission has greatly expanded. Its foci are now:

Operation

Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency's successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility's high-flux beam reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits. [10] [11]

History

Foundations

Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia, Cornell, Harvard, Johns Hopkins, MIT, Princeton, University of Pennsylvania, University of Rochester, and Yale University. [12]

Soldiers during World War I at the Camp Upton site, which would in 1947 be repurposed as BNL Soldier records, Camp Upton (LOC) (23546348723).jpg
Soldiers during World War I at the Camp Upton site, which would in 1947 be repurposed as BNL

Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center for the US Army during both World War I and World War II, and a Japanese internment camp during the latter.[ citation needed ] Following the war, Camp Upton was no longer needed, and a plan was conceived to convert the military camp into a research facility.

On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

Research and facilities

Reactor history

In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

Accelerator history

Satoshi Ozaki posed with a magnet for the Relativistic Heavy Ion Collider in 1991 Satoshi Ozaki 1991.jpg
Satoshi Ozaki posed with a magnet for the Relativistic Heavy Ion Collider in 1991

In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world's highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle. The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS). The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings. The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983. [13]

The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II.

After ISABELLE'S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC) was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world's only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider. RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by Thomas Jefferson National Accelerator Facility as the future Electron–ion collider (EIC) in the United States. In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. [14] BNL's eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel. [15]

Other discoveries

In 1958, Brookhaven scientists created one of the world's first video games, Tennis for Two. [16] [17]

In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

Major facilities

Off-site contributions

It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC). It is currently operating at CERN near Geneva, Switzerland. [29]

Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source in Oak Ridge, Tennessee.

Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Reactor Neutrino Experiment in China and the Deep Underground Neutrino Experiment at Fermi National Accelerator Laboratory. [30]

Public access

Exterior of National Synchrotron Light Source II facility in 2012, during a Brookhaven National Laboratory "Summer Sundays" public tour. National Synchrotron Light Source II.jpg
Exterior of National Synchrotron Light Source II facility in 2012, during a Brookhaven National Laboratory "Summer Sundays" public tour.

For other than approved Public Events, the Laboratory is closed to the general public. The lab is open to the public on several Sundays during the summer for tours and special programs. The public access program is referred to as 'Summer Sundays' and takes place in July, and features a science show and a tour of the lab's major facilities. [31] The laboratory also hosts science fairs, science bowls, and robotics competitions for local schools, and lectures, concerts, and scientific talks for the local community. The Lab estimates that each year it enhances the science education of roughly 35,000 K-12 students on Long Island, more than 200 undergraduates, and 550 teachers from across the United States.

Environmental cleanup

In January 1997, ground water samples taken by BNL staff revealed concentrations of tritium that were twice the allowable federal drinking water standards—some samples taken later were 32 times the standard. The tritium was found to be leaking from the laboratory's High Flux Beam Reactor's spent-fuel pool into the aquifer that provides drinking water for nearby Suffolk County residents.

DOE's and BNL's investigation of this incident concluded that the tritium had been leaking for as long as 12 years without DOE's or BNL's knowledge. Installing wells that could have detected the leak was first discussed by BNL engineers in 1993, but the wells were not completed until 1996. The resulting controversy about both BNL's handling of the tritium leak and perceived lapses in DOE's oversight led to the termination of AUI as the BNL contractor in May 1997.

The responsibility for failing to discover Brookhaven's tritium leak has been acknowledged by laboratory managers, and DOE admits it failed to properly oversee the laboratory's operations. Brookhaven officials repeatedly treated the need for installing monitoring wells that would have detected the tritium leak as a low priority despite public concern and the laboratory's agreement to follow local environmental regulations. DOE's on-site oversight office, the Brookhaven Group, was directly responsible for Brookhaven's performance, but it failed to hold the laboratory accountable for meeting all of its regulatory commitments, especially its agreement to install monitoring wells. Senior DOE leadership also shared responsibility because they failed to put in place an effective system that encourages all parts of DOE to work together to ensure that contractors meet their responsibilities on environmental, safety and health issues. Unclear responsibilities for environment, safety and health matters has been a recurring problem for DOE management.

Since 1993, DOE has spent more than US$580 million on remediating soil and groundwater contamination at the lab site and completed several high-profile projects. These include the decommissioning and decontamination of the Brookhaven Graphite Research Reactor, [32] removal of mercury-contaminated sediment from the Peconic River, and installation and operation of 16 on- and off-site groundwater treatment systems that have cleaned more than 25 billion gallons of groundwater since 1996. [33]

Shortly after winning the contract to operate the lab in 1997, BSA formed a Community Advisory Council (CAC) to advise the laboratory director on cleanup projects and other items of interest to the community. The CAC represents a diverse range of interests and values of individuals and groups who are interested in or affected by the actions of the Laboratory. It consists of representatives from 26 local business, civic, education, environment, employee, government, and health organizations. The CAC sets its own agenda, brings forth issues important to the community, and works to provide consensus recommendations to Laboratory management. [34]

Nobel Prizes

Nobel Prize in Physics

Nobel Prize in Chemistry

See also

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Fermilab</span> High-energy particle physics laboratory in Illinois, US

Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics.

ISABELLE was a 200+200 GeV proton–proton colliding beam particle accelerator partially built by the United States government at Brookhaven National Laboratory in Upton, New York, before it was cancelled in July, 1983.

<span class="mw-page-title-main">Relativistic Heavy Ion Collider</span> Particle accelerator

The Relativistic Heavy Ion Collider is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US. By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons, the spin structure of the proton is explored.

<span class="mw-page-title-main">United States Department of Energy National Laboratories</span> Laboratories owned by the United States Department of Energy

The United States Department of Energy National Laboratories and Technology Centers is a system of laboratories overseen by the United States Department of Energy (DOE) for scientific and technological research. The primary mission of the DOE national laboratories is to conduct research and development (R&D) addressing national priorities: energy and climate, the environment, national security, and health. Sixteen of the seventeen DOE national laboratories are federally funded research and development centers administered, managed, operated and staffed by private-sector organizations under management and operating (M&O) contracts with the DOE. The National Laboratory system was established in the wake of World War II, during which the United States had quickly set-up and pursued advanced scientific research in the sprawling Manhattan Project.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

<span class="mw-page-title-main">High-energy nuclear physics</span> Intersection of nuclear physics and high-energy physics

High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.

<span class="mw-page-title-main">Raymond Davis Jr.</span> American scientist (1914–2006)

Raymond Davis Jr. was an American chemist and physicist. He is best known as the leader of the Homestake experiment in the 1960s-1980s, which was the first experiment to detect neutrinos emitted from the Sun; for this he shared the 2002 Nobel Prize in Physics.

<span class="mw-page-title-main">Cornell Laboratory for Accelerator-based Sciences and Education</span> Research institute at Cornell University in Ithaca, NY

The Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) is a particle accelerator facility located in Wilson Laboratory on the Cornell University campus in Ithaca, NY. CLASSE was formed by merging the Cornell High-Energy Synchrotron Source (CHESS) and the Laboratory for Elementary-Particle Physics (LEPP) in July 2006. Nigel Lockyer is the Director of CLASSE in spring of 2023.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

<span class="mw-page-title-main">Alternating Gradient Synchrotron</span> Particle accelerator at Brookhaven National Laboratory

The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States.

The NASA Space Radiation Laboratory (NSRL, previously called Booster Applications Facility), is a heavy ion beamline research facility; part of the Collider-Accelerator Department of Brookhaven National Laboratory, located in Upton, New York on Long Island. Its primary mission is to use ion beams (H+to Bi83+) to simulate the cosmic ray radiation fields that are more prominent beyond Earth's atmosphere.

Nicholas P. Samios is an American physicist and former director of the Brookhaven National Laboratory in Upton, New York.

<span class="mw-page-title-main">Sam Aronson</span> American physicist

Sam Aronson is an American physicist, formerly president of the American Physical Society in 2015 and also formerly the director of the Brookhaven National Laboratory from 2006 to 2012.

Ady Hershcovitch is a plasma physicist best known for his 1995 invention, the plasma window, which was later patented.. In the plasma window, a plasma separates air from a vacuum by preventing the air from rushing into the vacuum. This scientific development can facilitate non-vacuum ion material modification, manufacturing of superalloys, and high-quality non-vacuum electron-beam welding. The device has been compared to the force field in the Star Trek TV series. He is well known for his work in plasma physics at Brookhaven National Laboratory. He has over 80 publications and 15 patents.

Fulvia Pilat is an Italian-American physicist who is currently the Research Accelerator Division Director at the Spallation Neutron Source and an elected fellow of the American Physical Society (APS).

<span class="mw-page-title-main">Christine Aidala</span> American high-energy nuclear physicist

Christine Angela Aidala is an American high-energy nuclear physicist, Alfred P. Sloan Research Fellow and Associate Professor of Physics at the University of Michigan. She studies nucleon structure and parton dynamics in quantum chromodynamics.

An electron–ion collider (EIC) is a type of particle accelerator collider designed to collide spin-polarized beams of electrons and ions, in order to study the properties of nuclear matter in detail via deep inelastic scattering. In 2012, a whitepaper was published, proposing the developing and building of an EIC accelerator, and in 2015, the Department of Energy Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in nuclear physics in the United States.

The National User Facilities are a set of large-scale scientific facilities maintained by the U.S. Department of Energy, Office of Science, whose roles are to provide the scientific community with world-leading scientific instruments to enable research. These facilities are generally free to use, and are open to scientists from all over the world, usually through the submission and evaluation of research proposals.

<span class="mw-page-title-main">Ilan Ben-Zvi</span> American accelerator physicist

Ilan Ben-Zvi is an accelerator physicist and academic. He was the associate chair for accelerator R&D at the Collider-Accelerator Department (C-AD), and is a distinguished scientist emeritus at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory.

References

  1. "Nobel Prizes at BNL". Bnl.gov. Retrieved July 25, 2012.
  2. "About BNL". BNL.gov. Retrieved June 21, 2016.
  3. "NWS Forecast Office New York, NY". September 5, 2017.
  4. "Physics Department". Bnl.gov. May 12, 2008. Retrieved March 17, 2010.
  5. "Homepage, Basic Energy Sciences Directorate". Bnl.gov. Archived from the original on May 27, 2010. Retrieved March 17, 2010.
  6. "Environmental Sciences Department". Bnl.gov. February 4, 2009. Archived from the original on March 8, 2010. Retrieved March 17, 2010.
  7. "Brookhaven National Laboratory Nonproliferation and National Security Programs". Bnl.gov. February 2, 2010. Retrieved March 17, 2010.
  8. "Biology Department – Brookhaven National Laboratory". Biology.bnl.gov. Archived from the original on March 13, 2009. Retrieved March 17, 2010.
  9. "BNL | Accelerator-based Science". www.bnl.gov.
  10. "Atomic Laboratory on Long Island to Be Mighty Research Center – New York Times – March 1, 1947".
  11. "Laboratory Loses Federal Contract - News - The Harvard Crimson". www.thecrimson.com.
  12. Crease, Robert P. (1999). Making Physics: A Biography of Brookhaven National Laboratory.
  13. "BNL - Our History: Accelerators". www.bnl.gov.
  14. “U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility” Archived January 14, 2020, at the Wayback Machine 2020.
  15. Aschenauer, E. C.; et al. (2014). "eRHIC Design Study: An Electron-Ion Collider at BNL". arXiv: 1409.1633 [physics.acc-ph].
  16. "The anatomy of the first video game - On the Level". NBC News. October 23, 2008. Retrieved March 17, 2010.
  17. "'+alt+'". Bnl.gov. Archived from the original on September 12, 2009. Retrieved March 17, 2010.
  18. "RHIC | Relativistic Heavy Ion Collider". Bnl.gov. Retrieved March 17, 2010.
  19. "RHIC | Spin Physics". www.bnl.gov. Archived from the original on July 26, 2009. Retrieved August 23, 2016.
  20. "Center for Functional Nanomaterials, Brookhaven National Laboratory". Bnl.gov. Retrieved March 17, 2010.
  21. "National Synchrotron Light Source". Nsls.bnl.gov. Archived from the original on March 15, 2010. Retrieved March 17, 2010.
  22. 1 2 "Nobel Prize | 2003 Chemistry Prize, Roderick MacKinnon". Bnl.gov. Archived from the original on May 28, 2010. Retrieved March 17, 2010.
  23. "Alternating Gradient Synchrotron". Bnl.gov. January 31, 2008. Archived from the original on January 13, 2010. Retrieved March 17, 2010.
  24. "Accelerator Test Facility". Bnl.gov. January 31, 2008. Archived from the original on May 27, 2010. Retrieved March 17, 2010.
  25. "Tandem Van de Graaff". Bnl.gov. February 28, 2008. Archived from the original on February 19, 2010. Retrieved March 17, 2010.
  26. "New York Blue, Blue Gene/L, Parallel Supercomputer, Brookhaven National Laboratory, (BNL)". www.bnl.gov. Archived from the original on April 26, 2015. Retrieved May 13, 2019.
  27. "BNL Newsroom | Doors Open at New Interdisciplinary Science Building for Energy Research at Brookhaven Lab". www.bnl.gov. Retrieved August 23, 2016.
  28. "BNL | NASA Space Radiation Laboratory (NSRL)". www.bnl.gov. Retrieved August 23, 2016.
  29. "BNL | Brookhaven and the Large Hadron Collider". www.bnl.gov. Retrieved August 23, 2016.
  30. "BNL | Neutrino Research History". www.bnl.gov. Retrieved August 23, 2016.
  31. "BNL | Summer Sundays". www.bnl.gov. Retrieved August 23, 2016.
  32. "Lab reactor fully decommissioned" . Retrieved August 23, 2016.
  33. "Environmental Cleanup, Brookhaven National Laboratory". www.bnl.gov. Retrieved August 23, 2016.
  34. "BNL | Community Advisory Council". www.bnl.gov. Retrieved August 23, 2016.
  35. "Nobel Prize | 1957 Physics Prize, Lee and Yang". Bnl.gov. Archived from the original on May 28, 2010. Retrieved March 17, 2010.
  36. "Nobel Prize | 1976 Prize in Physics, Samuel Ting". Bnl.gov. Archived from the original on May 28, 2010. Retrieved March 17, 2010.
  37. "Nobel Prize | 1980 Physics Prize, Cronin and Fitch". Bnl.gov. Archived from the original on May 28, 2010. Retrieved March 17, 2010.
  38. "Nobel Prize | 1988 Prize in Physics, Lederman, Schwartz and Steinberger". Bnl.gov. Retrieved March 17, 2010.
  39. "Nobel Prize | 2002 Physics Prize, Raymond Davis jr". Bnl.gov. Archived from the original on May 28, 2010. Retrieved March 17, 2010.
  40. "Nobel Prize | 2009 Chemistry Prize, Venkatraman Ramakrishnan and Thomas A. Steitz". Bnl.gov. Archived from the original on May 28, 2010. Retrieved May 20, 2010.