C-minimal theory

Last updated

In model theory, a branch of mathematical logic, a C-minimal theory is a theory that is "minimal" with respect to a ternary relation C with certain properties. Algebraically closed fields with a (Krull) valuation are perhaps the most important example.

Contents

This notion was defined in analogy to the o-minimal theories, which are "minimal" (in the same sense) with respect to a linear order.

Definition

A C-relation is a ternary relation C(x; y, z) that satisfies the following axioms.

A C-minimal structure is a structure M, in a signature containing the symbol C, such that C satisfies the above axioms and every set of elements of M that is definable with parameters in M is a Boolean combination of instances of C, i.e. of formulas of the form C(x; b, c), where b and c are elements of M.

A theory is called C-minimal if all of its models are C-minimal. A structure is called strongly C-minimal if its theory is C-minimal. One can construct C-minimal structures which are not strongly C-minimal.

Example

For a prime number p and a p-adic number a, let |a|p denote its p-adic absolute value. Then the relation defined by is a C-relation, and the theory of Qp with addition and this relation is C-minimal. The theory of Qp as a field, however, is not C-minimal.

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

In mathematics, equality is a relationship between two quantities or, more generally, two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians.

In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement

The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke–Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. The purpose of allowing urelements is to allow large or high-complexity objects to be included in the theory's transitive models without disrupting the usual well-ordering and recursion-theoretic properties of the constructible universe; KP is so weak that this is hard to do by traditional means.

Tarski's axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry that is formulable in first-order logic with identity, and requiring no set theory. Other modern axiomizations of Euclidean geometry are Hilbert's axioms and Birkhoff's axioms.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

In mathematics, an algebraic structure consisting of a non-empty set and a ternary mapping may be called a ternary system. A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation is defined by . Thus, we can think of a planar ternary ring as a generalization of a field where the ternary operation takes the place of both addition and multiplication.

In mathematics, point-free geometry is a geometry whose primitive ontological notion is region rather than point. Two axiomatic systems are set out below, one grounded in mereology, the other in mereotopology and known as connection theory.

In mathematical logic, Skolem arithmetic is the first-order theory of the natural numbers with multiplication, named in honor of Thoralf Skolem. The signature of Skolem arithmetic contains only the multiplication operation and equality, omitting the addition operation entirely.

General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.

In mathematical logic, the ancestral relation of a binary relation R is its transitive closure, however defined in a different way, see below.

In mathematical logic the theory of pure equality is a first-order theory. It has a signature consisting of only the equality relation symbol, and includes no non-logical axioms at all.

The following system is Mendelson's ST type theory. ST is equivalent with Russell's ramified theory plus the Axiom of reducibility. The domain of quantification is partitioned into an ascending hierarchy of types, with all individuals assigned a type. Quantified variables range over only one type; hence the underlying logic is first-order logic. ST is "simple" primarily because all members of the domain and codomain of any relation must be of the same type. There is a lowest type, whose individuals have no members and are members of the second lowest type. Individuals of the lowest type correspond to the urelements of certain set theories. Each type has a next higher type, analogous to the notion of successor in Peano arithmetic. While ST is silent as to whether there is a maximal type, a transfinite number of types poses no difficulty. These facts, reminiscent of the Peano axioms, make it convenient and conventional to assign a natural number to each type, starting with 0 for the lowest type. But type theory does not require a prior definition of the naturals.

In mathematical set theory, the axiom of adjunction states that for any two sets x, y there is a set w = x ∪ {y} given by "adjoining" the set y to the set x. It is stated as

References