Robinson arithmetic

Last updated

In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. [1] It is usually denoted Q. Q is almost[ clarification needed ] PA without the axiom schema of mathematical induction. Q is weaker than PA but it has the same language, and both theories are incomplete. Q is important and interesting because it is a finitely axiomatized fragment of PA that is recursively incompletable and essentially undecidable.

Contents

Axioms

The background logic of Q is first-order logic with identity, denoted by infix '='. The individuals, called natural numbers, are members of a set called N with a distinguished member 0, called zero. There are three operations over N:

The following axioms for Q are Q1–Q7 in Burgess (2005 , p. 42) (cf. also the axioms of first-order arithmetic). Variables not bound by an existential quantifier are bound by an implicit universal quantifier.

  1. Sx0
    • 0 is not the successor of any number.
  2. (Sx = Sy) → x = y
    • If the successor of x is identical to the successor of y, then x and y are identical. (1) and (2) yield the minimum of facts about N (it is an infinite set bounded by 0) and S (it is an injective function whose domain is N) needed for non-triviality. The converse of (2) follows from the properties of identity.
  3. y=0 ∨ ∃x (Sx = y)
    • Every number is either 0 or the successor of some number. The axiom schema of mathematical induction present in arithmetics stronger than Q turns this axiom into a theorem.
  4. x + 0 = x
  5. x + Sy = S(x + y)
  6. x·0 = 0
  7. x·Sy = (x·y) + x

Variant axiomatizations

The axioms in Robinson (1950) are (1)–(13) in Mendelson (2015 , pp. 202–203). The first 6 of Robinson's 13 axioms are required only when, unlike here, the background logic does not include identity.

The usual strict total order on N, "less than" (denoted by "<"), can be defined in terms of addition via the rule x < y ↔ ∃z (Sz + x = y). Equivalently, we get a definitional conservative extension of Q by taking "<" as primitive and adding this rule as an eighth axiom; this system is termed "Robinson arithmeticR" in Boolos, Burgess & Jeffrey (2002 , Sec 16.4).

A different extension of Q, which we temporarily call Q+, is obtained if we take "<" as primitive and add (instead of the last definitional axiom) the following three axioms to axioms (1)–(7) of Q:

Q+ is still a conservative extension of Q, in the sense that any formula provable in Q+ not containing the symbol "<" is already provable in Q. (Adding only the first two of the above three axioms to Q gives a conservative extension of Q that is equivalent to what Burgess (2005 , p. 56) calls Q*. See also Burgess (2005 , p. 230, fn. 24), but note that the second of the above three axioms cannot be deduced from "the pure definitional extension" of Q obtained by adding only the axiom x < y ↔ ∃z (Sz + x = y).)

Among the axioms (1)–(7) of Q, axiom (3) needs an inner existential quantifier. Shoenfield (1967 , p. 22) gives an axiomatization that has only (implicit) outer universal quantifiers, by dispensing with axiom (3) of Q but adding the above three axioms with < as primitive. That is, Shoenfield's system is Q+ minus axiom (3), and is strictly weaker than Q+, since axiom (3) is independent of the other axioms (for example, the ordinals less than forms a model for all axioms except (3) when Sv is interpreted as v + 1). Shoenfield's system also appears in Boolos, Burgess & Jeffrey (2002 , Sec 16.2), where it is called the "minimal arithmetic" (also denoted by Q). A closely related axiomatization, that uses "≤" instead of "<", may be found in Machover (1996 , pp. 256–257).

Metamathematics

On the metamathematics of Q see Boolos, Burgess & Jeffrey (2002 , chpt. 16), Tarski, Mostowski & Robinson (1953), Smullyan (1991), Mendelson (2015 , pp. 202–203) and Burgess (2005 , §§1.5a, 2.2). The intended interpretation of Q is the natural numbers and their usual arithmetic in which addition and multiplication have their customary meaning, identity is equality, Sx = x + 1, and 0 is the natural number zero.

Any model (structure) that satisfies all axioms of Q except possibly axiom (3) has a unique submodel ("the standard part") isomorphic to the standard natural numbers (N, +, ·, S, 0). (Axiom (3) need not be satisfied; for example the polynomials with non-negative integer coefficients forms a model that satisfies all axioms except (3).)

Q, like Peano arithmetic, has nonstandard models of all infinite cardinalities. However, unlike Peano arithmetic, Tennenbaum's theorem does not apply to Q, and it has computable non-standard models. For instance, there is a computable model of Q consisting of integer-coefficient polynomials with positive leading coefficient, plus the zero polynomial, with their usual arithmetic.

A notable characteristic of Q is the absence of the axiom scheme of induction. Hence it is often possible to prove in Q every specific instance of a fact about the natural numbers, but not the associated general theorem. For example, 5 + 7 = 7 + 5 is provable in Q, but the general statement x + y = y + x is not. Similarly, one cannot prove that Sxx. [2] A model of Q that fails many of the standard facts is obtained by adjoining two distinct new elements a and b to the standard model of natural numbers and defining Sa = a, Sb = b, x + a = b and x + b = a for all x, a + n = a and b + n = b if n is a standard natural number, x·0 = 0 for all x, a·n = b and b·n = a if n is a non-zero standard natural number, x·a = a for all x except x = a, x·b = b for all x except x = b, a·a = b, and b·b = a. [3]

Q is interpretable in a fragment of Zermelo's axiomatic set theory, consisting of extensionality, existence of the empty set, and the axiom of adjunction. This theory is S' in Tarski, Mostowski & Robinson (1953 , p. 34) and ST in Burgess (2005 , pp. 90–91, 223). See general set theory for more details.

Q is a finitely axiomatized first-order theory that is considerably weaker than Peano arithmetic (PA), and whose axioms contain only one existential quantifier. Yet like PA it is incomplete and incompletable in the sense of Gödel's incompleteness theorems, and essentially undecidable. Robinson (1950) derived the Q axioms (1)–(7) above by noting just what PA axioms are required [4] to prove that every computable function is representable in PA. [5] The only use this proof makes of the PA axiom schema of induction is to prove a statement that is axiom (3) above, and so, all computable functions are representable in Q. [6] [7] [8] The conclusion of Gödel's second incompleteness theorem also holds for Q: no consistent recursively axiomatized extension of Q can prove its own consistency, even if we additionally restrict Gödel numbers of proofs to a definable cut. [9] [10] [11]

The first incompleteness theorem applies only to axiomatic systems defining sufficient arithmetic to carry out the necessary coding constructions (of which Gödel numbering forms a part). The axioms of Q were chosen specifically to ensure they are strong enough for this purpose. Thus the usual proof of the first incompleteness theorem can be used to show that Q is incomplete and undecidable. This indicates that the incompleteness and undecidability of PA cannot be blamed on the only aspect of PA differentiating it from Q, namely the axiom schema of induction.

Gödel's theorems do not hold when any one of the seven axioms above is dropped. These fragments of Q remain undecidable, but they are no longer essentially undecidable: they have consistent decidable extensions, as well as uninteresting models (i.e., models that are not end-extensions of the standard natural numbers).[ citation needed ]

See also

Related Research Articles

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

<span class="mw-page-title-main">George Boolos</span> American philosopher and mathematical logician

George Stephen Boolos was an American philosopher and a mathematical logician who taught at the Massachusetts Institute of Technology.

In mathematical logic, the diagonal lemma establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem.

Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that "arithmetical truth cannot be defined in arithmetic".

Self-verifying theories are consistent first-order systems of arithmetic, much weaker than Peano arithmetic, that are capable of proving their own consistency. Dan Willard was the first to investigate their properties, and he has described a family of such systems. According to Gödel's incompleteness theorem, these systems cannot contain the theory of Peano arithmetic nor its weak fragment Robinson arithmetic; nonetheless, they can contain strong theorems.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In mathematical logic, an ω-consistenttheory is a theory that is not only (syntactically) consistent, but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem.

Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction, as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms. Gentzen argued that it avoids the questionable modes of inference contained in Peano arithmetic and that its consistency is therefore less controversial.

This article gives a sketch of a proof of Gödel's first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume for the remainder of the article that a fixed theory satisfying these hypotheses has been selected.

General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.

In proof theory, the Dialectica interpretation is a proof interpretation of intuitionistic logic into a finite type extension of primitive recursive arithmetic, the so-called System T. It was developed by Kurt Gödel to provide a consistency proof of arithmetic. The name of the interpretation comes from the journal Dialectica, where Gödel's paper was published in a 1958 special issue dedicated to Paul Bernays on his 70th birthday.

In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.

References

  1. Robinson 1950.
  2. Burgess 2005, p. 56.
  3. Boolos, Burgess & Jeffrey 2002, Sec 16.4.
  4. Mendelson 2015, p. 188, Proposition 3.24.
  5. A function is said to be representable in if there is a formula such that for all
  6. Odifreddi 1989.
  7. Mendelson 2015, p. 203, Proposition 3.33.
  8. Rautenberg 2010, p. 246.
  9. Bezboruah & Shepherdson 1976.
  10. Pudlák 1985.
  11. Hájek & Pudlák 1993, p. 387.

Bibliography