Causal structure

Last updated

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

Contents

Introduction

In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events.

The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature. Discussions of the causal structure for such manifolds must be phrased in terms of smooth curves joining pairs of points. Conditions on the tangent vectors of the curves then define the causal relationships.

Tangent vectors

Subdivision of Minkowski spacetime with respect to a point in four disjoint sets. The light cone, the causal future, the causal past, and elsewhere. The terminology is defined in this article. World line.svg
Subdivision of Minkowski spacetime with respect to a point in four disjoint sets. The light cone, the causal future, the causal past, and elsewhere. The terminology is defined in this article.

If is a Lorentzian manifold (for metric on manifold ) then the nonzero tangent vectors at each point in the manifold can be classified into three disjoint types. A tangent vector is:

Here we use the metric signature. We say that a tangent vector is non-spacelike if it is null or timelike.

The canonical Lorentzian manifold is Minkowski spacetime, where and is the flat Minkowski metric. The names for the tangent vectors come from the physics of this model. The causal relationships between points in Minkowski spacetime take a particularly simple form because the tangent space is also and hence the tangent vectors may be identified with points in the space. The four-dimensional vector is classified according to the sign of , where is a Cartesian coordinate in 3-dimensional space, is the constant representing the universal speed limit, and is time. The classification of any vector in the space will be the same in all frames of reference that are related by a Lorentz transformation (but not by a general Poincaré transformation because the origin may then be displaced) because of the invariance of the metric.

Time-orientability

At each point in the timelike tangent vectors in the point's tangent space can be divided into two classes. To do this we first define an equivalence relation on pairs of timelike tangent vectors.

If and are two timelike tangent vectors at a point we say that and are equivalent (written ) if .

There are then two equivalence classes which between them contain all timelike tangent vectors at the point. We can (arbitrarily) call one of these equivalence classes future-directed and call the other past-directed. Physically this designation of the two classes of future- and past-directed timelike vectors corresponds to a choice of an arrow of time at the point. The future- and past-directed designations can be extended to null vectors at a point by continuity.

A Lorentzian manifold is time-orientable [1] if a continuous designation of future-directed and past-directed for non-spacelike vectors can be made over the entire manifold.

Curves

A path in is a continuous map where is a nondegenerate interval (i.e., a connected set containing more than one point) in . A smooth path has differentiable an appropriate number of times (typically ), and a regular path has nonvanishing derivative.

A curve in is the image of a path or, more properly, an equivalence class of path-images related by re-parametrisation, i.e. homeomorphisms or diffeomorphisms of . When is time-orientable, the curve is oriented if the parameter change is required to be monotonic.

Smooth regular curves (or paths) in can be classified depending on their tangent vectors. Such a curve is

The requirements of regularity and nondegeneracy of ensure that closed causal curves (such as those consisting of a single point) are not automatically admitted by all spacetimes.

If the manifold is time-orientable then the non-spacelike curves can further be classified depending on their orientation with respect to time.

A chronological, null or causal curve in is

These definitions only apply to causal (chronological or null) curves because only timelike or null tangent vectors can be assigned an orientation with respect to time.

Causal relations

There are several causal relations between points and in the manifold .

These relations satisfy the following properties:

For a point in the manifold we define [5]

We similarly define

Points contained in , for example, can be reached from by a future-directed timelike curve. The point can be reached, for example, from points contained in by a future-directed non-spacelike curve.

In Minkowski spacetime the set is the interior of the future light cone at . The set is the full future light cone at , including the cone itself.

These sets defined for all in , are collectively called the causal structure of .

For a subset of we define [5]

For two subsets of we define

Causal diamond PhysRevD.99.086006 Fig2 CausalDiamond.png
Causal diamond

Properties

See Penrose (1972), p13.

Topological properties:

Conformal geometry

Two metrics and are conformally related [8] if for some real function called the conformal factor. (See conformal map).

Looking at the definitions of which tangent vectors are timelike, null and spacelike we see they remain unchanged if we use or . As an example suppose is a timelike tangent vector with respect to the metric. This means that . We then have that so is a timelike tangent vector with respect to the too.

It follows from this that the causal structure of a Lorentzian manifold is unaffected by a conformal transformation.

A null geodesic remains a null geodesic under a conformal rescaling.

Conformal infinity

An infinite metric admits geodesics of infinite length/proper time. However, we can sometimes make a conformal rescaling of the metric with a conformal factor which falls off sufficiently fast to 0 as we approach infinity to get the conformal boundary of the manifold. The topological structure of the conformal boundary depends upon the causal structure.

In various spaces:

Gravitational singularity

If a geodesic terminates after a finite affine parameter, and it is not possible to extend the manifold to extend the geodesic, then we have a singularity.

The absolute event horizon is the past null cone of the future timelike infinity. It is generated by null geodesics which obey the Raychaudhuri optical equation.

See also

Notes

  1. Hawking & Israel 1979 , p. 255
  2. Galloway, Gregory J. "Notes on Lorentzian causality" (PDF). ESI-EMS-IAMP Summer School on Mathematical Relativity. University of Miami. p. 4. Retrieved 2 July 2021.
  3. Penrose 1972 , p. 15
  4. 1 2 Papadopoulos, Kyriakos; Acharjee, Santanu; Papadopoulos, Basil K. (May 2018). "The order on the light cone and its induced topology". International Journal of Geometric Methods in Modern Physics. 15 (5): 1850069–1851572. arXiv: 1710.05177 . Bibcode:2018IJGMM..1550069P. doi:10.1142/S021988781850069X. S2CID   119120311.
  5. 1 2 3 4 5 6 Penrose 1972 , p. 12
  6. Stoica, O. C. (25 May 2016). "Spacetime Causal Structure and Dimension from Horismotic Relation". Journal of Gravity. 2016: 1–6. arXiv: 1504.03265 . doi: 10.1155/2016/6151726 .
  7. 1 2 Sard 1970 , p. 78
  8. Hawking & Ellis 1973 , p. 42

Related Research Articles

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

The world line of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space combines inertial space and time manifolds with a non-inertial reference frame of space and time into a four-dimensional model relating a position to the field.

In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949, who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity which would replace GR, an idea which Stephen Hawking labeled the chronology protection conjecture. Others note that if every closed timelike curve in a given space-time passes through an event horizon, a property which can be called chronological censorship, then that space-time with event horizons excised would still be causally well behaved and an observer might not be able to detect the causal violation.

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In general relativity, the monochromatic electromagnetic plane wave spacetime is the analog of the monochromatic plane waves known from Maxwell's theory. The precise definition of the solution is quite complicated but very instructive.

The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In the mathematical field of Lorentzian geometry, a Cauchy surface is a certain kind of submanifold of a Lorentzian manifold. In the application of Lorentzian geometry to the physics of general relativity, a Cauchy surface is usually interpreted as defining an "instant of time". In the mathematics of general relativity, Cauchy surfaces provide boundary conditions for the causal structure in which the Einstein equations can be solved

In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.

In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold.

In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold. It is called hyperbolic in analogy with the linear theory of wave propagation, where the future state of a system is specified by initial conditions. This is relevant to Albert Einstein's theory of general relativity, and potentially to other metric gravitational theories.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

<span class="mw-page-title-main">Spacetime topology</span>

Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology.

In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

References

Further reading