Christine Vogel

Last updated
Christine Vogel
Alma mater University College London
University of Cambridge
Max Planck Institute for Chemical Ecology
Scientific career
Institutions New York University
University of Texas at Austin
Doctoral advisor Cyrus Chothia

Christine Vogel is a German-American molecular biologist who is an associate professor at the New York University. Her research considers quantitative proteomics. She is particularly interested in protein expression patterns and how these are related to human disease.

Contents

Early life and education

Vogel is from Germany. She was awarded the German National Merit Foundation award, and earned her master's degree at the Max Planck Institute for Chemical Ecology. Vogel moved to University College London for a second master's in mathematical biology. She left London for Cambridge for her doctoral research, where she specialized in computational biology in the laboratory of Cyrus Chothia. In 2005 Vogel was appointed a postdoctoral researcher at the University of Texas at Austin. [1]

Research and career

Vogel was appointed as an assistant professor at the New York University in 2011. [1] Vogel has studied the mechanisms involved with protein signalling. [2] The creation of proteins involve messenger RNA molecules from the genes encoded within DNA. Both the generation of RNA and formation of proteins are coupled to one another, akin to the coupling of a moving escalator with someone walking upon it. [2] Vogel has shown that both processes, the generation of RNA and the arrangement of RNA into proteins, are important. She demonstrated that the process of generating RNA from DNA is pulsed-like: brief spikes of activity that relax to a ground state, whereas the creation of proteins was more like an on-off switch. [2]

Vogel is interested in how genes respond to different stressors [3] and how certain environmental conditions can give rise to mutations such as cancer. [4] Amongst these genes, Vogel has studied BRCA1, which, if functioning properly, can prevent cells from dividing or growing. Mutations on the BRCA1 means that damage to DNA cannot be repaired, such that cells mutate and cause cancer. [4] Vogel believes that by understanding the pathways involved with these processes she will be able to design drugs to counter this BRCA1 mutation. [4] In 2019, her laboratory was named a Pressure BioSciences Center for Excellence. [5]

Vogel has served as an editor for PLoS Computational Biology. [6]

Awards

2017 US Human Proteome Organization Robert J. Cotter New Investigator Award [7]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, chemistry, physics, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for in silico analyses of biological queries using computational and statistical techniques.

<span class="mw-page-title-main">Gene expression</span> Conversion of a genes sequence into a mature gene product or products

Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication.

<span class="mw-page-title-main">Non-coding RNA</span> Class of ribonucleic acid that is not translated into proteins

A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long ncRNAs such as Xist and HOTAIR.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a sub-field of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. The field of study is based on the merging of several sub-fields in biology: classical Mendelian inheritance, cellular biology, molecular biology, biochemistry, and biotechnology. Researchers search for mutations in a gene or induce mutations in a gene to link a gene sequence to a specific phenotype. Molecular genetics is a powerful methodology for linking mutations to genetic conditions that may aid the search for treatments/cures for various genetics diseases.

<span class="mw-page-title-main">BRCA1</span> Gene known for its role in breast cancer

Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene and is responsible for repairing DNA.

<span class="mw-page-title-main">Fanconi anemia</span> Medical condition

Fanconi anaemia (FA) is a rare genetic disease resulting in impaired response to DNA damage. Although it is a very rare disorder, study of this and other bone marrow failure syndromes has improved scientific understanding of the mechanisms of normal bone marrow function and development of cancer. Among those affected, the majority develop cancer, most often acute myelogenous leukemia (AML), and 90% develop aplastic anemia by age 40. About 60–75% have congenital defects, commonly short stature, abnormalities of the skin, arms, head, eyes, kidneys, and ears, and developmental disabilities. Around 75% have some form of endocrine problem, with varying degrees of severity.

<span class="mw-page-title-main">Regulation of gene expression</span> Modifying mechanisms used by cells to increase or decrease the production of specific gene products

Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products. Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein. Often, one gene regulator controls another, and so on, in a gene regulatory network.

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "gene-by-gene" approach.

Malignant transformation is the process by which cells acquire the properties of cancer. This may occur as a primary process in normal tissue, or secondarily as malignant degeneration of a previously existing benign tumor.

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein present in the cell nucleus during gene transcription and subsequent post-transcriptional modification of the newly synthesized RNA (pre-mRNA). The presence of the proteins bound to a pre-mRNA molecule serves as a signal that the pre-mRNA is not yet fully processed and therefore not ready for export to the cytoplasm. Since most mature RNA is exported from the nucleus relatively quickly, most RNA-binding protein in the nucleus exist as heterogeneous ribonucleoprotein particles. After splicing has occurred, the proteins remain bound to spliced introns and target them for degradation.

<span class="mw-page-title-main">Oncogenomics</span> Sub-field of genomics

Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.

<span class="mw-page-title-main">RAD51</span>

DNA repair protein RAD51 homolog 1 is a protein encoded by the gene RAD51. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to the bacterial RecA, Archaeal RadA and yeast Rad51. The protein is highly conserved in most eukaryotes, from yeast to humans.

<span class="mw-page-title-main">ERCC1</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-1 is a protein that in humans is encoded by the ERCC1 gene. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occurs between the transcription phase and the translation phase of gene expression. These controls are critical for the regulation of many genes across human tissues. It also plays a big role in cell physiology, being implicated in pathologies such as cancer and neurodegenerative diseases.

TOX high mobility group box family member 3, also known as TOX3, is a human gene.

Edward Marcotte is a professor of biochemistry at The University of Texas at Austin, working in genetics, proteomics, and bioinformatics. Marcotte is an example of a computational biologist who also relies on experiments to validate bioinformatics-based predictions.

When overexpressed ectopically, anticancer genes are those that preferentially kill cancer cells while sparing normal, healthy cells. Apoptosis, necrosis, or apoptosis following a mitotic catastrophe, and autophagy are only a few of the processes that can lead to cell death. In the late 1990s, research on cancer cells led to the identification of anticancer genes. Currently, 291 The human genome contains anti-cancer genes. Base substitutions that lead to insertions, deletions, or alterations in missense amino acids that cause frameshifts that alter the protein that the gene codes for copy number variations or gene rearrangements that lead to their deregulation are all necessary for a gene change in copy number or gene rearrangements. (1)

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

<span class="mw-page-title-main">Hanah Margalit</span>

Hanah Margalit is a Professor in the faculty of medicine at the Hebrew University of Jerusalem. Her research combines bioinformatics, computational biology and systems biology, specifically in the fields of gene regulation in bacteria and eukaryotes.

Marisa Bartolomei is an American cell biologist, the Perelman Professor of Cell and Developmental Biology and Co-Director of the Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania. Her research considers epigenetic processes including genomic imprinting. She was elected to the National Academy of Sciences in 2021.

References

  1. 1 2 "About Christine – Vogel Lab – NYU" . Retrieved 2021-04-13.
  2. 1 2 3 "Scientists Shed New Light on Workings of Genetic Regulation". New York University. 2016-01-25. Archived from the original on 2016-09-21. Retrieved 2021-04-13.
  3. "New mechanism to aid cells under stress identified". ScienceDaily. Retrieved 2021-04-13.
  4. 1 2 3 Porcelli, Victor (29 October 2018). "October Calls for Cancer Awareness at NYU | Washington Square News" . Retrieved 2021-04-13.
  5. "Pressure BioSciences Names the Vogel Laboratory at New York University's Center for Genomics and Systems Biology a Center of Excellence". BioSpace. Retrieved 2021-04-13.
  6. Crook, Oliver M.; Mulvey, Claire M.; Kirk, Paul D. W.; Lilley, Kathryn S.; Gatto, Laurent (2018-11-27). "A Bayesian mixture modelling approach for spatial proteomics". PLOS Computational Biology. 14 (11): e1006516. Bibcode:2018PLSCB..14E6516C. doi:10.1371/journal.pcbi.1006516. ISSN   1553-7358. PMC   6258510 . PMID   30481170.
  7. "US HUPO - New Investigator Award". www.ushupo.org. Retrieved 2022-06-11.