Confused deputy problem

Last updated

In information security, a confused deputy is a computer program that is tricked by another program (with fewer privileges or less rights) into misusing its authority on the system. It is a specific type of privilege escalation. [1] The confused deputy problem is often cited as an example of why capability-based security is important.

Contents

Capability systems protect against the confused deputy problem, whereas access-control list–based systems do not. [2]

Example

In the original example of a confused deputy, [3] there was a compiler program provided on a commercial timesharing service. Users could run the compiler and optionally specify a filename where it would write debugging output, and the compiler would be able to write to that file if the user had permission to write there.

The compiler also collected statistics about language feature usage. Those statistics were stored in a file called "(SYSX)STAT", in the directory "SYSX". To make this possible, the compiler program was given permission to write to files in SYSX.

But there were other files in SYSX: in particular, the system's billing information was stored in a file "(SYSX)BILL". A user ran the compiler and named "(SYSX)BILL" as the desired debugging output file.

This produced a confused deputy problem. The compiler made a request to the operating system to open (SYSX)BILL. Even though the user did not have access to that file, the compiler did, so the open succeeded. The compiler wrote the compilation output to the file (here "(SYSX)BILL") as normal, overwriting it, and the billing information was destroyed.

The confused deputy

In this example, the compiler program is the deputy because it is acting at the request of the user. The program is seen as 'confused' because it was tricked into overwriting the system's billing file.

Whenever a program tries to access a file, the operating system needs to know two things: which file the program is asking for, and whether the program has permission to access the file. In the example, the file is designated by its name, “(SYSX)BILL”. The program receives the file name from the user, but does not know whether the user had permission to write the file. When the program opens the file, the system uses the program's permission, not the user's. When the file name was passed from the user to the program, the permission did not go along with it; the permission was increased by the system silently and automatically.

It is not essential to the attack that the billing file be designated by a name represented as a string. The essential points are that:

Other examples

Prototypical confused deputy Barney Fife Don Knotts Barney and the bullet Andy Griffith Show.jpg
Prototypical confused deputy Barney Fife

A cross-site request forgery (CSRF) is an example of a confused deputy attack that uses the web browser to perform sensitive actions against a web application. A common form of this attack occurs when a web application uses a cookie to authenticate all requests transmitted by a browser. Using JavaScript, an attacker can force a browser into transmitting authenticated HTTP requests.

The Samy computer worm used cross-site scripting (XSS) to turn the browser's authenticated MySpace session into a confused deputy. Using XSS the worm forced the browser into posting an executable copy of the worm as a MySpace message which was then viewed and executed by friends of the infected user.

Clickjacking is an attack where the user acts as the confused deputy. In this attack a user thinks they are harmlessly browsing a website (an attacker-controlled website) but they are in fact tricked into performing sensitive actions on another website. [4]

An FTP bounce attack can allow an attacker to connect indirectly to TCP ports to which the attacker's machine has no access, using a remote FTP server as the confused deputy.

Another example relates to personal firewall software. It can restrict Internet access for specific applications. Some applications circumvent this by starting a browser with instructions to access a specific URL. The browser has authority to open a network connection, even though the application does not. Firewall software can attempt to address this by prompting the user in cases where one program starts another which then accesses the network. However, the user frequently does not have sufficient information to determine whether such an access is legitimate—false positives are common, and there is a substantial risk that even sophisticated users will become habituated to clicking "OK" to these prompts. [5]

Not every program that misuses authority is a confused deputy. Sometimes misuse of authority is simply a result of a program error. The confused deputy problem occurs when the designation of an object is passed from one program to another, and the associated permission changes unintentionally, without any explicit action by either party. It is insidious because neither party did anything explicit to change the authority.

Solutions

In some systems it is possible to ask the operating system to open a file using the permissions of another client. This solution has some drawbacks:

The simplest way to solve the confused deputy problem is to bundle together the designation of an object and the permission to access that object. This is exactly what a capability is.[ citation needed ]

Using capability security in the compiler example, the client would pass to the server a capability to the output file, such as a file descriptor, rather than the name of the file. Since it lacks a capability to the billing file, it cannot designate that file for output. In the cross-site request forgery example, a URL supplied "cross"-site would include its own authority independent of that of the client of the web browser.

See also

Related Research Articles

<span class="mw-page-title-main">Client–server model</span> Distributed application structure in computing

The client–server model is a distributed application structure that partitions tasks or workloads between the providers of a resource or service, called servers, and service requesters, called clients. Often clients and servers communicate over a computer network on separate hardware, but both client and server may reside in the same system. A server host runs one or more server programs, which share their resources with clients. A client usually does not share any of its resources, but it requests content or service from a server. Clients, therefore, initiate communication sessions with servers, which await incoming requests. Examples of computer applications that use the client–server model are email, network printing, and the World Wide Web.

In computing, Common Gateway Interface (CGI) is an interface specification that enables web servers to execute an external program to process HTTP/S user requests.

<span class="mw-page-title-main">JavaScript</span> High-level programming language

JavaScript, often abbreviated as JS, is a programming language that is one of the core technologies of the World Wide Web, alongside HTML and CSS. As of 2023, 98.7% of websites use JavaScript on the client side for webpage behavior, often incorporating third-party libraries. All major web browsers have a dedicated JavaScript engine to execute the code on users' devices.

<span class="mw-page-title-main">HTTP</span> Application protocol for distributed, collaborative, hypermedia information systems

The Hypertext Transfer Protocol (HTTP) is an application layer protocol in the Internet protocol suite model for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web, where hypertext documents include hyperlinks to other resources that the user can easily access, for example by a mouse click or by tapping the screen in a web browser.

<span class="mw-page-title-main">HTTPS</span> Extension of the HTTP communications protocol to support TLS encryption

Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP). It uses encryption for secure communication over a computer network, and is widely used on the Internet. In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS) or, formerly, Secure Sockets Layer (SSL). The protocol is therefore also referred to as HTTP over TLS, or HTTP over SSL.

<span class="mw-page-title-main">Web server</span> Computer software that distributes web pages

A web server is computer software and underlying hardware that accepts requests via HTTP or its secure variant HTTPS. A user agent, commonly a web browser or web crawler, initiates communication by making a request for a web page or other resource using HTTP, and the server responds with the content of that resource or an error message. A web server can also accept and store resources sent from the user agent if configured to do so.

<span class="mw-page-title-main">Proxy server</span> Computer server that makes and receives requests on behalf of a user

In computer networking, a proxy server is a server application that acts as an intermediary between a client requesting a resource and the server providing that resource. It improves privacy, security, and performance in the process.

<span class="mw-page-title-main">Cross-site scripting</span> Computer security vulnerability

Cross-site scripting (XSS) is a type of security vulnerability that can be found in some web applications. XSS attacks enable attackers to inject client-side scripts into web pages viewed by other users. A cross-site scripting vulnerability may be used by attackers to bypass access controls such as the same-origin policy. Cross-site scripting carried out on websites accounted for roughly 84% of all security vulnerabilities documented by Symantec up until 2007. XSS effects vary in range from petty nuisance to significant security risk, depending on the sensitivity of the data handled by the vulnerable site and the nature of any security mitigation implemented by the site's owner network.

In computer networking, a network service is an application running at the network application layer and above, that provides data storage, manipulation, presentation, communication or other capability which is often implemented using a client–server or peer-to-peer architecture based on application layer network protocols.

<span class="mw-page-title-main">Code injection</span> Computer bug exploit caused by invalid data

Code injection is the exploitation of a computer bug that is caused by processing invalid data. The injection is used by an attacker to introduce code into a vulnerable computer program and change the course of execution. The result of successful code injection can be disastrous, for example, by allowing computer viruses or computer worms to propagate.

<span class="mw-page-title-main">Digest access authentication</span> Method of negotiating credentials between web server and browser

Digest access authentication is one of the agreed-upon methods a web server can use to negotiate credentials, such as username or password, with a user's web browser. This can be used to confirm the identity of a user before sending sensitive information, such as online banking transaction history. It applies a hash function to the username and password before sending them over the network. In contrast, basic access authentication uses the easily reversible Base64 encoding instead of hashing, making it non-secure unless used in conjunction with TLS.

A web framework (WF) or web application framework (WAF) is a software framework that is designed to support the development of web applications including web services, web resources, and web APIs. Web frameworks provide a standard way to build and deploy web applications on the World Wide Web. Web frameworks aim to automate the overhead associated with common activities performed in web development. For example, many web frameworks provide libraries for database access, templating frameworks, and session management, and they often promote code reuse. Although they often target development of dynamic web sites, they are also applicable to static websites.

In computer science, session hijacking, sometimes also known as cookie hijacking, is the exploitation of a valid computer session—sometimes also called a session key—to gain unauthorized access to information or services in a computer system. In particular, it is used to refer to the theft of a magic cookie used to authenticate a user to a remote server. It has particular relevance to web developers, as the HTTP cookies used to maintain a session on many websites can be easily stolen by an attacker using an intermediary computer or with access to the saved cookies on the victim's computer. After successfully stealing appropriate session cookies an adversary might use the Pass the Cookie technique to perform session hijacking. Cookie hijacking is commonly used against client authentication on the internet. Modern web browsers use cookie protection mechanisms to protect the web from being attacked.

The Network Livermore Timesharing System is an operating system that was actively developed at Lawrence Livermore Laboratory from 1979 until about 1988, though it continued to run production applications until 1995. An earlier system, the Livermore Time Sharing System had been developed over a decade earlier.

Ambient authority is a term used in the study of access control systems.

<span class="mw-page-title-main">HTTP 403</span> HTTP status code indicating that access is forbidden to a resource

HTTP 403 is an HTTP status code meaning access to the requested resource is forbidden. The server understood the request, but will not fulfill it.

<span class="mw-page-title-main">Clickjacking</span> Malicious technique of tricking a Web user

Clickjacking is a malicious technique of tricking a user into clicking on something different from what the user perceives, thus potentially revealing confidential information or allowing others to take control of their computer while clicking on seemingly innocuous objects, including web pages.

Cross-site request forgery, also known as one-click attack or session riding and abbreviated as CSRF or XSRF, is a type of malicious exploit of a website or web application where unauthorized commands are submitted from a user that the web application trusts. There are many ways in which a malicious website can transmit such commands; specially-crafted image tags, hidden forms, and JavaScript fetch or XMLHttpRequests, for example, can all work without the user's interaction or even knowledge. Unlike cross-site scripting (XSS), which exploits the trust a user has for a particular site, CSRF exploits the trust that a site has in a user's browser. In a CSRF attack, an innocent end user is tricked by an attacker into submitting a web request that they did not intend. This may cause actions to be performed on the website that can include inadvertent client or server data leakage, change of session state, or manipulation of an end user's account.

Content Security Policy (CSP) is a computer security standard introduced to prevent cross-site scripting (XSS), clickjacking and other code injection attacks resulting from execution of malicious content in the trusted web page context. It is a Candidate Recommendation of the W3C working group on Web Application Security, widely supported by modern web browsers. CSP provides a standard method for website owners to declare approved origins of content that browsers should be allowed to load on that website—covered types are JavaScript, CSS, HTML frames, web workers, fonts, images, embeddable objects such as Java applets, ActiveX, audio and video files, and other HTML5 features.

ASP.NET Web Forms is a web application framework and one of several programming models supported by the Microsoft ASP.NET technology. Web Forms applications can be written in any programming language which supports the Common Language Runtime, such as C# or Visual Basic. The main building blocks of Web Forms pages are server controls, which are reusable components responsible for rendering HTML markup and responding to events. A technique called view state is used to persist the state of server controls between normally stateless HTTP requests.

References

  1. Wu, Jianliang; Cui, Tingting; Ban, Tao; Guo, Shanqing; Cui, Lizhen (2015-09-10). "PaddyFrog: systematically detecting confused deputy vulnerability in Android applications: PaddyFrog: systematically detecting confused deputy vulnerability in Android applications". Security and Communication Networks. 8 (13): 2338–2349. doi:10.1002/sec.1179.
  2. "ACLs don't". sourceforge.net.
  3. "The Confused Deputy (or why capabilities might have been invented)". Archived from the original on 2003-12-05. Retrieved 2003-12-31.
  4. "clickjacking: The Confused Deputy rides again!". sourceforge.net.
  5. Alfred Spiessens: Patterns of Safe Collaboration, PhD thesis. http://www.evoluware.eu/fsp_thesis.pdf Section 8.1.5