Critical dimension

Last updated

In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. Above the upper critical dimension the critical exponents of the theory become the same as that in mean field theory. An elegant criterion to obtain the critical dimension within mean field theory is due to V. Ginzburg.

Contents

Since the renormalization group sets up a relation between a phase transition and a quantum field theory, this has implications for the latter and for our larger understanding of renormalization in general. Above the upper critical dimension, the quantum field theory which belongs to the model of the phase transition is a free field theory. Below the lower critical dimension, there is no field theory corresponding to the model.

In the context of string theory the meaning is more restricted: the critical dimension is the dimension at which string theory is consistent assuming a constant dilaton background without additional confounding permutations from background radiation effects. The precise number may be determined by the required cancellation of conformal anomaly on the worldsheet; it is 26 for the bosonic string theory and 10 for superstring theory.

Upper critical dimension in field theory

Determining the upper critical dimension of a field theory is a matter of linear algebra. It is worthwhile to formalize the procedure because it yields the lowest-order approximation for scaling and essential input for the renormalization group. It also reveals conditions to have a critical model in the first place.

The exponents of the monomials of a critical Lagrangian define a hyperplane in an exponent space. The upper critical dimension can be read off at the
E
1
{\displaystyle E_{1}}
-axis.. CriticalHyperplane.png
The exponents of the monomials of a critical Lagrangian define a hyperplane in an exponent space. The upper critical dimension can be read off at the -axis..

A Lagrangian may be written as a sum of terms, each consisting of an integral over a monomial of coordinates and fields . Examples are the standard -model and the isotropic Lifshitz tricritical point with Lagrangians

see also the figure on the right. This simple structure may be compatible with a scale invariance under a rescaling of the coordinates and fields with a factor according to

Time is not singled out here — it is just another coordinate: if the Lagrangian contains a time variable then this variable is to be rescaled as with some constant exponent . The goal is to determine the exponent set .

One exponent, say , may be chosen arbitrarily, for example . In the language of dimensional analysis this means that the exponents count wave vector factors (a reciprocal length ). Each monomial of the Lagrangian thus leads to a homogeneous linear equation for the exponents . If there are (inequivalent) coordinates and fields in the Lagrangian, then such equations constitute a square matrix. If this matrix were invertible then there only would be the trivial solution .

The condition for a nontrivial solution gives an equation between the space dimensions, and this determines the upper critical dimension (provided there is only one variable dimension in the Lagrangian). A redefinition of the coordinates and fields now shows that determining the scaling exponents is equivalent to a dimensional analysis with respect to the wavevector , with all coupling constants occurring in the Lagrangian rendered dimensionless. Dimensionless coupling constants are the technical hallmark for the upper critical dimension.

Naive scaling at the level of the Lagrangian does not directly correspond to physical scaling because a cutoff is required to give a meaning to the field theory and the path integral. Changing the length scale also changes the number of degrees of freedom. This complication is taken into account by the renormalization group. The main result at the upper critical dimension is that scale invariance remains valid for large factors , but with additional factors in the scaling of the coordinates and fields.

What happens below or above depends on whether one is interested in long distances (statistical field theory) or short distances (quantum field theory). Quantum field theories are trivial (convergent) below and not renormalizable above . [1] Statistical field theories are trivial (convergent) above and renormalizable below . In the latter case there arise "anomalous" contributions to the naive scaling exponents . These anomalous contributions to the effective critical exponents vanish at the upper critical dimension.

It is instructive to see how the scale invariance at the upper critical dimension becomes a scale invariance below this dimension. For small external wave vectors the vertex functions acquire additional exponents, for example . If these exponents are inserted into a matrix (which only has values in the first column) the condition for scale invariance becomes . This equation only can be satisfied if the anomalous exponents of the vertex functions cooperate in some way. In fact, the vertex functions depend on each other hierarchically. One way to express this interdependence are the Dyson–Schwinger equations.

Naive scaling at thus is important as zeroth order approximation. Naive scaling at the upper critical dimension also classifies terms of the Lagrangian as relevant, irrelevant or marginal. A Lagrangian is compatible with scaling if the - and -exponents lie on a hyperplane, for examples see the figure above. is a normal vector of this hyperplane.

Lower critical dimension

The lower critical dimension of a phase transition of a given universality class is the last dimension for which this phase transition does not occur if the dimension is increased starting with .

Thermodynamic stability of an ordered phase depends on entropy and energy. Quantitatively this depends on the type of domain walls and their fluctuation modes. There appears to be no generic formal way for deriving the lower critical dimension of a field theory. Lower bounds may be derived with statistical mechanics arguments.

Consider first a one-dimensional system with short range interactions. Creating a domain wall requires a fixed energy amount . Extracting this energy from other degrees of freedom decreases entropy by . This entropy change must be compared with the entropy of the domain wall itself. [2] In a system of length there are positions for the domain wall, leading (according to Boltzmann's principle) to an entropy gain . For nonzero temperature and large enough the entropy gain always dominates, and thus there is no phase transition in one-dimensional systems with short-range interactions at . Space dimension thus is a lower bound for the lower critical dimension of such systems.

A stronger lower bound can be derived with the help of similar arguments for systems with short range interactions and an order parameter with a continuous symmetry. In this case the Mermin–Wagner Theorem states that the order parameter expectation value vanishes in at , and there thus is no phase transition of the usual type at and below.

For systems with quenched disorder a criterion given by Imry and Ma [3] might be relevant. These authors used the criterion to determine the lower critical dimension of random field magnets.

Related Research Articles

Feynman diagram Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations which won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

Quantum field theory Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities described by critical exponents, universality, fractal behaviour, and ergodicity breaking. Critical phenomena take place in second order phase transitions, although not exclusively.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.

The Berezinskii–Kosterlitz–Thouless transition is a phase transition of the two-dimensional (2-D) XY model in statistical physics. It is a transition from bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-vortices at some critical temperature. The transition is named for condensed matter physicists Vadim Berezinskii, John M. Kosterlitz and David J. Thouless. BKT transitions can be found in several 2-D systems in condensed matter physics that are approximated by the XY model, including Josephson junction arrays and thin disordered superconducting granular films. More recently, the term has been applied by the 2-D superconductor insulator transition community to the pinning of Cooper pairs in the insulating regime, due to similarities with the original vortex BKT transition.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on:

String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The Coleman–Weinberg model represents quantum electrodynamics of a scalar field in four-dimensions. The Lagrangian for the model is

In statistical mechanics and quantum field theory, a dangerously irrelevant operator is an operator which is irrelevant at a renormalization group fixed point, yet affects the infrared (IR) physics significantly.

A polymer field theory is a statistical field theory describing the statistical behavior of a neutral or charged polymer system. It can be derived by transforming the partition function from its standard many-dimensional integral representation over the particle degrees of freedom in a functional integral representation over an auxiliary field function, using either the Hubbard–Stratonovich transformation or the delta-functional transformation. Computer simulations based on polymer field theories have been shown to deliver useful results, for example to calculate the structures and properties of polymer solutions, polymer melts and thermoplastics.

Gauge theory Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian does not change under local transformations according to certain smooth families of operations.

This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

Asymptotic safety in quantum gravity Attempt to find a consistent theory of quantum gravity

Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.

In theoretical physics, Hamiltonian field theory is the field-theoretic analogue to classical Hamiltonian mechanics. It is a formalism in classical field theory alongside Lagrangian field theory. It also has applications in quantum field theory.

The KTHNY-theory describes melting of crystals in two dimensions (2D). The name is derived from the initials of the surnames of John Michael Kosterlitz, David J. Thouless, Bertrand Halperin, David R. Nelson, and A. Peter Young, who developed the theory in the 1970s. It is, beside the Ising model in 2D and the XY model in 2D, one of the few theories, which can be solved analytically and which predicts a phase transition at a temperature .

References

  1. Zinn-Justin, Jean (1996). Quantum field theory and critical phenomena. Oxford: Clarendon Press. ISBN   0-19-851882-X.
  2. Pitaevskii, L. P.; Landau, L. D.; Lifshitz, E. M.; Sykes, J. B.; Kearsley, M. W.; Lifshitz, E. M. (1991). Statistical physics. Oxford: Butterworth-Heinemann. ISBN   0-7506-3372-7.
  3. Imry, Y.; S. K. Ma (1975). "Random-Field Instability of the Ordered State of Continuous Symmetry". Phys. Rev. Lett. 35 (21): 1399–1401. Bibcode:1975PhRvL..35.1399I. doi:10.1103/PhysRevLett.35.1399.