Lagrangian (field theory)

Last updated

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

Contents

One motivation for the development of the Lagrangian formalism on fields, and more generally, for classical field theory, is to provide a clear mathematical foundation for quantum field theory, which is infamously beset by formal difficulties that make it unacceptable as a mathematical theory. The Lagrangians presented here are identical to their quantum equivalents, but, in treating the fields as classical fields, instead of being quantized, one can provide definitions and obtain solutions with properties compatible with the conventional formal approach to the mathematics of partial differential equations. This enables the formulation of solutions on spaces with well-characterized properties, such as Sobolev spaces. It enables various theorems to be provided, ranging from proofs of existence to the uniform convergence of formal series to the general settings of potential theory. In addition, insight and clarity is obtained by generalizations to Riemannian manifolds and fiber bundles, allowing the geometric structure to be clearly discerned and disentangled from the corresponding equations of motion. A clearer view of the geometric structure has in turn allowed highly abstract theorems from geometry to be used to gain insight, ranging from the Chern–Gauss–Bonnet theorem and the Riemann–Roch theorem to the Atiyah–Singer index theorem and Chern–Simons theory.

Overview

In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold. The dependent variables are replaced by the value of a field at that point in spacetime so that the equations of motion are obtained by means of an action principle, written as:

where the action, , is a functional of the dependent variables , their derivatives and s itself

where the brackets denote ; and s = {sα} denotes the set of n independent variables of the system, including the time variable, and is indexed by α = 1, 2, 3, ..., n. The calligraphic typeface, , is used to denote the density, and is the volume form of the field function, i.e., the measure of the domain of the field function.

In mathematical formulations, it is common to express the Lagrangian as a function on a fiber bundle, wherein the Euler–Lagrange equations can be interpreted as specifying the geodesics on the fiber bundle. Abraham and Marsden's textbook [1] provided the first comprehensive description of classical mechanics in terms of modern geometrical ideas, i.e., in terms of tangent manifolds, symplectic manifolds and contact geometry. Bleecker's textbook [2] provided a comprehensive presentation of field theories in physics in terms of gauge invariant fiber bundles. Such formulations were known or suspected long before. Jost [3] continues with a geometric presentation, clarifying the relation between Hamiltonian and Lagrangian forms, describing spin manifolds from first principles, etc. Current research focuses on non-rigid affine structures, (sometimes called "quantum structures") wherein one replaces occurrences of vector spaces by tensor algebras. This research is motivated by the breakthrough understanding of quantum groups as affine Lie algebras (Lie groups are, in a sense "rigid", as they are determined by their Lie algebra. When reformulated on a tensor algebra, they become "floppy", having infinite degrees of freedom; see e.g. Virasoro algebra.)

Definitions

In Lagrangian field theory, the Lagrangian as a function of generalized coordinates is replaced by a Lagrangian density, a function of the fields in the system and their derivatives, and possibly the space and time coordinates themselves. In field theory, the independent variable t is replaced by an event in spacetime (x, y, z, t) or still more generally by a point s on a manifold.

Often, a "Lagrangian density" is simply referred to as a "Lagrangian".

Scalar fields

For one scalar field , the Lagrangian density will take the form: [nb 1] [4]

For many scalar fields

In mathematical formulations, the scalar fields are understood to be coordinates on a fiber bundle, and the derivatives of the field are understood to be sections of the jet bundle.

Vector fields, tensor fields, spinor fields

The above can be generalized for vector fields, tensor fields, and spinor fields. In physics, fermions are described by spinor fields. Bosons are described by tensor fields, which include scalar and vector fields as special cases.

For example, if there are real-valued scalar fields, , then the field manifold is . If the field is a real vector field, then the field manifold is isomorphic to .

Action

The time integral of the Lagrangian is called the action denoted by S. In field theory, a distinction is occasionally made between the LagrangianL, of which the time integral is the action

and the Lagrangian density, which one integrates over all spacetime to get the action:

The spatial volume integral of the Lagrangian density is the Lagrangian; in 3D,

The action is often referred to as the "action functional", in that it is a function of the fields (and their derivatives).

Volume form

In the presence of gravity or when using general curvilinear coordinates, the Lagrangian density will include a factor of . This ensures that the action is invariant under general coordinate transformations. In mathematical literature, spacetime is taken to be a Riemannian manifold and the integral then becomes the volume form

Here, the is the wedge product and is the square root of the determinant of the metric tensor on . For flat spacetime (e.g., Minkowski spacetime), the unit volume is one, i.e. and so it is commonly omitted, when discussing field theory in flat spacetime. Likewise, the use of the wedge-product symbols offers no additional insight over the ordinary concept of a volume in multivariate calculus, and so these are likewise dropped. Some older textbooks, e.g., Landau and Lifschitz write for the volume form, since the minus sign is appropriate for metric tensors with signature (+−−−) or (−+++) (since the determinant is negative, in either case). When discussing field theory on general Riemannian manifolds, the volume form is usually written in the abbreviated notation where is the Hodge star. That is,

and so

Not infrequently, the notation above is considered to be entirely superfluous, and

is frequently seen. Do not be misled: the volume form is implicitly present in the integral above, even if it is not explicitly written.

Euler–Lagrange equations

The Euler–Lagrange equations describe the geodesic flow of the field as a function of time. Taking the variation with respect to , one obtains

Solving, with respect to the boundary conditions, one obtains the Euler–Lagrange equations:

Examples

A large variety of physical systems have been formulated in terms of Lagrangians over fields. Below is a sampling of some of the most common ones found in physics textbooks on field theory.

Newtonian gravity

The Lagrangian density for Newtonian gravity is:

where Φ is the gravitational potential, ρ is the mass density, and G in m3·kg−1·s−2 is the gravitational constant. The density has units of J·m−3. Here the interaction term involves a continuous mass density ρ in kg·m−3. This is necessary because using a point source for a field would result in mathematical difficulties.

This Lagrangian can be written in the form of , with the providing a kinetic term, and the interaction the potential term. See also Nordström's theory of gravitation for how this could be modified to deal with changes over time. This form is reprised in the next example of a scalar field theory.

The variation of the integral with respect to Φ is:

After integrating by parts, discarding the total integral, and dividing out by δΦ the formula becomes:

which is equivalent to:

which yields Gauss's law for gravity.

Scalar field theory

The Lagrangian for a scalar field moving in a potential can be written as

It is not at all an accident that the scalar theory resembles the undergraduate textbook Lagrangian for the kinetic term of a free point particle written as . The scalar theory is the field-theory generalization of a particle moving in a potential. When the is the Mexican hat potential, the resulting fields are termed the Higgs fields.

Sigma model Lagrangian

The sigma model describes the motion of a scalar point particle constrained to move on a Riemannian manifold, such as a circle or a sphere. It generalizes the case of scalar and vector fields, that is, fields constrained to move on a flat manifold. The Lagrangian is commonly written in one of three equivalent forms:

where the is the differential. An equivalent expression is

with the Riemannian metric on the manifold of the field; i.e. the fields are just local coordinates on the coordinate chart of the manifold. A third common form is

with

and , the Lie group SU(N). This group can be replaced by any Lie group, or, more generally, by a symmetric space. The trace is just the Killing form in hiding; the Killing form provides a quadratic form on the field manifold, the lagrangian is then just the pullback of this form. Alternately, the Lagrangian can also be seen as the pullback of the Maurer–Cartan form to the base spacetime.

In general, sigma models exhibit topological soliton solutions. The most famous and well-studied of these is the Skyrmion, which serves as a model of the nucleon that has withstood the test of time.

Electromagnetism in special relativity

Consider a point particle, a charged particle, interacting with the electromagnetic field. The interaction terms

are replaced by terms involving a continuous charge density ρ in A·s·m−3 and current density in A·m−2. The resulting Lagrangian density for the electromagnetic field is:

Varying this with respect to ϕ, we get

which yields Gauss' law.

Varying instead with respect to , we get

which yields Ampère's law.

Using tensor notation, we can write all this more compactly. The term is actually the inner product of two four-vectors. We package the charge density into the current 4-vector and the potential into the potential 4-vector. These two new vectors are

We can then write the interaction term as

Additionally, we can package the E and B fields into what is known as the electromagnetic tensor . We define this tensor as

The term we are looking out for turns out to be

We have made use of the Minkowski metric to raise the indices on the EMF tensor. In this notation, Maxwell's equations are

where ε is the Levi-Civita tensor. So the Lagrange density for electromagnetism in special relativity written in terms of Lorentz vectors and tensors is

In this notation it is apparent that classical electromagnetism is a Lorentz-invariant theory. By the equivalence principle, it becomes simple to extend the notion of electromagnetism to curved spacetime. [5] [6]

Electromagnetism and the Yang–Mills equations

Using differential forms, the electromagnetic action S in vacuum on a (pseudo-) Riemannian manifold can be written (using natural units, c = ε0 = 1) as

Here, A stands for the electromagnetic potential 1-form, J is the current 1-form, F is the field strength 2-form and the star denotes the Hodge star operator. This is exactly the same Lagrangian as in the section above, except that the treatment here is coordinate-free; expanding the integrand into a basis yields the identical, lengthy expression. Note that with forms, an additional integration measure is not necessary because forms have coordinate differentials built in. Variation of the action leads to

These are Maxwell's equations for the electromagnetic potential. Substituting F = dA immediately yields the equation for the fields,

because F is an exact form.

The A field can be understood to be the affine connection on a U(1)-fiber bundle. That is, classical electrodynamics, all of its effects and equations, can be completely understood in terms of a circle bundle over Minkowski spacetime.

The Yang–Mills equations can be written in exactly the same form as above, by replacing the Lie group U(1) of electromagnetism by an arbitrary Lie group. In the Standard model, it is conventionally taken to be although the general case is of general interest. In all cases, there is no need for any quantization to be performed. Although the Yang–Mills equations are historically rooted in quantum field theory, the above equations are purely classical. [2] [3]

Chern–Simons functional

In the same vein as the above, one can consider the action in one dimension less, i.e. in a contact geometry setting. This gives the Chern–Simons functional. It is written as

Chern–Simons theory was deeply explored in physics, as a toy model for a broad range of geometric phenomena that one might expect to find in a grand unified theory.

Ginzburg–Landau Lagrangian

The Lagrangian density for Ginzburg–Landau theory combines the Lagrangian for the scalar field theory with the Lagrangian for the Yang–Mills action. It may be written as: [7]

where is a section of a vector bundle with fiber . The corresponds to the order parameter in a superconductor; equivalently, it corresponds to the Higgs field, after noting that the second term is the famous "Sombrero hat" potential. The field is the (non-Abelian) gauge field, i.e. the Yang–Mills field and is its field-strength. The Euler–Lagrange equations for the Ginzburg–Landau functional are the Yang–Mills equations

and

where is the Hodge star operator, i.e. the fully antisymmetric tensor. These equations are closely related to the Yang–Mills–Higgs equations. Another closely related Lagrangian is found in Seiberg–Witten theory.

Dirac Lagrangian

The Lagrangian density for a Dirac field is: [8]

where is a Dirac spinor, is its Dirac adjoint, and is Feynman slash notation for . There is no particular need to focus on Dirac spinors in the classical theory. The Weyl spinors provide a more general foundation; they can be constructed directly from the Clifford algebra of spacetime; the construction works in any number of dimensions, [3] and the Dirac spinors appear as a special case. Weyl spinors have the additional advantage that they can be used in a vielbein for the metric on a Riemannian manifold; this enables the concept of a spin structure, which, roughly speaking, is a way of formulating spinors consistently in a curved spacetime.

Quantum electrodynamic Lagrangian

The Lagrangian density for QED combines the Lagrangian for the Dirac field together with the Lagrangian for electrodynamics in a gauge-invariant way. It is:

where is the electromagnetic tensor, D is the gauge covariant derivative, and is Feynman notation for with where is the electromagnetic four-potential. Although the word "quantum" appears in the above, this is a historical artifact. The definition of the Dirac field requires no quantization whatsoever, it can be written as a purely classical field of anti-commuting Weyl spinors constructed from first principles from a Clifford algebra. [3] The full gauge-invariant classical formulation is given in Bleecker. [2]

Quantum chromodynamic Lagrangian

The Lagrangian density for quantum chromodynamics combines the Lagrangian for one or more massive Dirac spinors with the Lagrangian for the Yang–Mills action, which describes the dynamics of a gauge field; the combined Lagrangian is gauge invariant. It may be written as: [9]

where D is the QCD gauge covariant derivative, n = 1, 2, ...6 counts the quark types, and is the gluon field strength tensor. As for the electrodynamics case above, the appearance of the word "quantum" above only acknowledges its historical development. The Lagrangian and its gauge invariance can be formulated and treated in a purely classical fashion. [2] [3]

Einstein gravity

The Lagrange density for general relativity in the presence of matter fields is

where is the cosmological constant, is the curvature scalar, which is the Ricci tensor contracted with the metric tensor, and the Ricci tensor is the Riemann tensor contracted with a Kronecker delta. The integral of is known as the Einstein–Hilbert action. The Riemann tensor is the tidal force tensor, and is constructed out of Christoffel symbols and derivatives of Christoffel symbols, which define the metric connection on spacetime. The gravitational field itself was historically ascribed to the metric tensor; the modern view is that the connection is "more fundamental". This is due to the understanding that one can write connections with non-zero torsion. These alter the metric without altering the geometry one bit. As to the actual "direction in which gravity points" (e.g. on the surface of the Earth, it points down), this comes from the Riemann tensor: it is the thing that describes the "gravitational force field" that moving bodies feel and react to. (This last statement must be qualified: there is no "force field" per se; moving bodies follow geodesics on the manifold described by the connection. They move in a "straight line".)

The Lagrangian for general relativity can also be written in a form that makes it manifestly similar to the Yang–Mills equations. This is called the Einstein–Yang–Mills action principle. This is done by noting that most of differential geometry works "just fine" on bundles with an affine connection and arbitrary Lie group. Then, plugging in SO(3,1) for that symmetry group, i.e. for the frame fields, one obtains the equations above. [2] [3]

Substituting this Lagrangian into the Euler–Lagrange equation and taking the metric tensor as the field, we obtain the Einstein field equations

is the energy momentum tensor and is defined by

where is the determinant of the metric tensor when regarded as a matrix. Generally, in general relativity, the integration measure of the action of Lagrange density is . This makes the integral coordinate independent, as the root of the metric determinant is equivalent to the Jacobian determinant. The minus sign is a consequence of the metric signature (the determinant by itself is negative). [5] This is an example of the volume form, previously discussed, becoming manifest in non-flat spacetime.

Electromagnetism in general relativity

The Lagrange density of electromagnetism in general relativity also contains the Einstein–Hilbert action from above. The pure electromagnetic Lagrangian is precisely a matter Lagrangian . The Lagrangian is

This Lagrangian is obtained by simply replacing the Minkowski metric in the above flat Lagrangian with a more general (possibly curved) metric . We can generate the Einstein Field Equations in the presence of an EM field using this lagrangian. The energy-momentum tensor is

It can be shown that this energy momentum tensor is traceless, i.e. that

If we take the trace of both sides of the Einstein Field Equations, we obtain

So the tracelessness of the energy momentum tensor implies that the curvature scalar in an electromagnetic field vanishes. The Einstein equations are then

Additionally, Maxwell's equations are

where is the covariant derivative. For free space, we can set the current tensor equal to zero, . Solving both Einstein and Maxwell's equations around a spherically symmetric mass distribution in free space leads to the Reissner–Nordström charged black hole, with the defining line element (written in natural units and with charge Q): [5]

One possible way of unifying the electromagnetic and gravitational Lagrangians (by using a fifth dimension) is given by Kaluza–Klein theory. [2] Effectively, one constructs an affine bundle, just as for the Yang–Mills equations given earlier, and then considers the action separately on the 4-dimensional and the 1-dimensional parts. Such factorizations, such as the fact that the 7-sphere can be written as a product of the 4-sphere and the 3-sphere, or that the 11-sphere is a product of the 4-sphere and the 7-sphere, accounted for much of the early excitement that a theory of everything had been found. Unfortunately, the 7-sphere proved not large enough to enclose all of the Standard model, dashing these hopes.

Additional examples

See also

Notes

  1. It is a standard abuse of notation to abbreviate all the derivatives and coordinates in the Lagrangian density as follows:
    see four-gradient. The μ is an index which takes values 0 (for the time coordinate), and 1, 2, 3 (for the spatial coordinates), so strictly only one derivative or coordinate would be present. In general, all the spatial and time derivatives will appear in the Lagrangian density, for example in Cartesian coordinates, the Lagrangian density has the full form:
    Here we write the same thing, but using to abbreviate all spatial derivatives as a vector.

Citations

  1. Ralph Abraham and Jerrold E. Marsden, (1967) "Foundations of Mechanics"
  2. 1 2 3 4 5 6 David Bleecker, (1981) "Gauge Theory and Variational Principles" Addison-Wesley
  3. 1 2 3 4 5 6 Jurgen Jost, (1995) "Riemannian Geometry and Geometric Analysis", Springer
  4. Mandl, F.; Shaw, G. (2010). "Lagrangian Field Theory". Quantum Field Theory (2nd ed.). Wiley. p.  25–38. ISBN   978-0-471-49684-7.
  5. 1 2 3 Zee, Anthony (2013). Einstein gravity in a nutshell . Princeton: Princeton University Press. pp.  344–390. ISBN   9780691145587.
  6. Cahill, Kevin (2013). Physical mathematics. Cambridge: Cambridge University Press. ISBN   9781107005211.
  7. Jost, Jürgen (2002). "The Ginzburg–Landau Functional". Riemannian Geometry and Geometric Analysis (Third ed.). Springer-Verlag. pp.  373–381. ISBN   3-540-42627-2.
  8. Itzykson-Zuber, eq. 3-152
  9. Claude Itykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory"

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

In physics, particularly in quantum field theory, configurations of a physical system that satisfy classical equations of motion are called on the mass shell ; while those that do not are called off the mass shell.

<span class="mw-page-title-main">Proca action</span> Action of a massive abelian gauge field

In physics, specifically field theory and particle physics, the Proca action describes a massive spin-1 field of mass m in Minkowski spacetime. The corresponding equation is a relativistic wave equation called the Proca equation. The Proca action and equation are named after Romanian physicist Alexandru Proca.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

In analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, for example, Pauli coupling, which includes the magnetic moment of an electron directly in the Lagrangian.

The pressuron is a hypothetical scalar particle which couples to both gravity and matter theorised in 2013. Although originally postulated without self-interaction potential, the pressuron is also a dark energy candidate when it has such a potential. The pressuron takes its name from the fact that it decouples from matter in pressure-less regimes, allowing the scalar–tensor theory of gravity involving it to pass solar system tests, as well as tests on the equivalence principle, even though it is fundamentally coupled to matter. Such a decoupling mechanism could explain why gravitation seems to be well described by general relativity at present epoch, while it could actually be more complex than that. Because of the way it couples to matter, the pressuron is a special case of the hypothetical string dilaton. Therefore, it is one of the possible solutions to the present non-observation of various signals coming from massless or light scalar fields that are generically predicted in string theory.