DSSAM Model

Last updated
Lake Tahoe, headwater sub-basin of the Truckee River watershed Lake-tahoe.jpg
Lake Tahoe, headwater sub-basin of the Truckee River watershed

The DSSAM Model (Dynamic Stream Simulation and Assessment Model) is a computer simulation developed for the Truckee River to analyze water quality impacts from land use and wastewater management decisions in the Truckee River Basin. This area includes the cities of Reno and Sparks, Nevada as well as the Lake Tahoe Basin. The model is historically and alternatively called the Earth Metrics Truckee River Model. Since original development in 1984-1986 under contract to the U.S. Environmental Protection Agency (EPA), [1] the model has been refined and successive versions have been dubbed DSSAM II and DSSAM III. This hydrology transport model is based upon a pollutant loading metric called Total maximum daily load (TMDL). The success of this flagship model contributed to the Agency's broadened commitment to the use of the underlying TMDL protocol in its national policy for management of most river systems in the United States. [2]

Contents

The Truckee River has a length of over 115 miles (185 km) and drains an area of approximately 3120 square miles, [3] not counting the extent of its Lake Tahoe sub-basin. The DSSAM model establishes numerous stations along the entire river extent as well as a considerable number of monitoring points inside the Great Basin's Pyramid Lake, the receiving waters of this closed hydrological system. Although the region is sparsely populated, it is important because Lake Tahoe is visited by 20 million persons per annum and Truckee River water quality affects at least two endangered species: the Cui-ui sucker fish and the Lahontan cutthroat trout.

Development history

Satellite photo of Pyramid Lake, September 1994 Pyramid Lake sat.jpg
Satellite photo of Pyramid Lake, September 1994

Impetus to derive a quantitative prediction model arose from a trend of historically decreasing river flow rates coupled with jurisdictional and tribal conflicts over water rights as well as concern for river biota. When expansion of the Reno-Sparks Wastewater Treatment Plant was proposed, the EPA decided to fund a large scale research effort to create simulation software and a parallel program to collect field data in the Truckee River and Pyramid Lake. For river stations water quality measurements were made in the benthic zone as well as the topic zone; in the case of Pyramid Lake boats were used to collect grab samples at varying depths and locations. Earth Metrics conducted the software development for the first generation computer model and collected field data on water quality and flow rates in the Truckee River. After model calibration, runs were made to evaluate impacts of alternative land use controls and discharge parameters for treated effluent.

The DSSAM Model is constructed to allow dynamic decay of most pollutants; for example, total nitrogen and phosphorus are allowed to be consumed by benthic algae in each time step, and the algal communities are given a separate population dynamic in each river reach (e.g.metabolic rate based upon river temperature). Sources throughout the watershed include non-point agricultural and urban stormwater as well as a multiplicity of point source discharges of treated municipal wastewater effluent.

Subsequent to the first generation of DSSAM model development, calibration and application, later refinements were made. These augmentations to model functionality focussed on increased flexibility in modeling the diel cycle and also allowed inclusion of analyzing particulate nitrogen and phosphorus. In developing DSSAM III several changes in the model operation and scope were performed. [4]

Applications

Numerous different uses of the model have been made including (a)analysis of public policies for urban stormwater runoff, (b) researching agricultural methods for surface runoff minimization, (c) innovative solutions for non-point source control and d)engineering aspects of treated wastewater discharge. Regarding stormwater runoff in Washoe County, the specific elements within a new xeriscape ordinance were analyzed for efficacy using the model. For the varied agricultural uses in the watershed, the model was run to understand the principal sources of adverse impact, and management practices were developed to reduce in river pollution. Use of the model has specifically been conducted to analyze survival of two endangered species found in the Truckee River and Pyramid Lake: the Cui-ui sucker fish (endangered 1967) and the Lahontan cutthroat trout (threatened 1970). When the model is used for surface runoff reaching a stream, this pollutant input can be viewed as a line source (e.g., a continuous linear source of pollution entering the waterway).

See also

Related Research Articles

<span class="mw-page-title-main">Sparks, Nevada</span> City in Nevada, United States

Sparks is a city in Washoe County, Nevada, United States. It was founded in 1904, incorporated on March 15, 1905, and is located just east of Reno. The 2020 U.S. Census counted 108,445 residents in the city. It is the fifth most populous city in Nevada. It is named after John Sparks, Nevada Governor (1903–1908), and a member of the Silver Party.

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Pyramid Lake (Nevada)</span> Lake in Nevada, United States

Pyramid Lake is the geographic sink of the basin of the Truckee River, 40 mi (64 km) northeast of Reno, Nevada, United States.

The Truckee–Carson Irrigation District (TCID) is a political subdivision of the State of Nevada, which operates dams at Lake Tahoe, diversion dams on the Truckee River in Washoe County, and the Lake Lahontan reservoir.

The cui-ui is a large sucker fish endemic to Pyramid Lake and, prior to its desiccation in the 20th century, Winnemucca Lake in northwestern Nevada. It feeds primarily on zooplankton and possibly on nanoplankton. The maximum size of male cui-ui is approximately 53 cm (21 in) and 1.6 kg (3.5 lb), while females reach approximately 64 cm (25 in) and 2.7 kg (6.0 lb). A cui-ui typically lives for 40 years but do not reach sexual maturity until at least age eight. The cui-ui is an endangered species, and one of the few surviving members of its genus.

<span class="mw-page-title-main">Truckee River</span> River in Nevada and California, United States

The Truckee River is a river in the U.S. states of California and Nevada. The river flows northeasterly and is 121 miles (195 km) long. The Truckee is the sole outlet of Lake Tahoe and drains part of the high Sierra Nevada, emptying into Pyramid Lake in the Great Basin. Its waters are an important source of irrigation along its valley and adjacent valleys.

<span class="mw-page-title-main">Clean Water Act</span> 1972 U.S. federal law regulating water pollution

The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibilities of the states in addressing pollution and providing assistance to states to do so, including funding for publicly owned treatment works for the improvement of wastewater treatment; and maintaining the integrity of wetlands.

<span class="mw-page-title-main">Lahontan cutthroat trout</span> Subspecies of fish

Lahontan cutthroat trout is the largest subspecies of cutthroat trout, and the state fish of Nevada. It is one of three subspecies of cutthroat trout that are listed as federally threatened.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

The tui chub is a cyprinid fish native to western North America. Widespread in many areas, it is an important food source for other fish, including the cutthroat trout.

<span class="mw-page-title-main">Hydrological transport model</span>

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

<span class="mw-page-title-main">Total dissolved solids</span> Measurement in environmental chemistry

Total dissolved solids (TDS) is a measure of the dissolved combined content of all inorganic and organic substances present in a liquid in molecular, ionized, or micro-granular suspended form. TDS are often measured in parts per million (ppm). TDS in water can be measured using a digital meter.

A total maximum daily load (TMDL) is a regulatory term in the U.S. Clean Water Act, describing a plan for restoring impaired waters that identifies the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards.

<span class="mw-page-title-main">Best management practice for water pollution</span> Term used in the United States and Canada to describe a type of water pollution control

Best management practices (BMPs) is a term used in the United States and Canada to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in stormwater management and wetland management, BMPs may refer to a principal control or treatment technique as well.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and industry, although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients and other pollutants into surface water.

Water quality modeling involves water quality based data using mathematical simulation techniques. Water quality modeling helps people understand the eminence of water quality issues and models provide evidence for policy makers to make decisions in order to properly mitigate water. Water quality modeling also helps determine correlations to constituent sources and water quality along with identifying information gaps. Due to the increase in freshwater usage among people, water quality modeling is especially relevant both in a local level and global level. In order to understand and predict the changes over time in water scarcity, climate change, and the economic factor of water resources, water quality models would need sufficient data by including water bodies from both local and global levels.

<span class="mw-page-title-main">United States regulation of point source water pollution</span> Overview of the regulation of point source water pollution in the United States of America

Point source water pollution comes from discrete conveyances and alters the chemical, biological, and physical characteristics of water. In the United States, it is largely regulated by the Clean Water Act (CWA). Among other things, the Act requires dischargers to obtain a National Pollutant Discharge Elimination System (NPDES) permit to legally discharge pollutants into a water body. However, point source pollution remains an issue in some water bodies, due to some limitations of the Act. Consequently, other regulatory approaches have emerged, such as water quality trading and voluntary community-level efforts.

References

  1. C.M.Hogan, Marc Papineau et al. Development of a dynamic water quality simulation model for the Truckee River, Earth Metrics Inc., Environmental Protection Agency Technology Series, Washington D.C. (1987)
  2. Guidance for Water Quality-Based Decisions: The TMDL Process (Report). Washington, D.C.: U.S. Environmental Protection Agency (EPA). April 1991. EPA 440/4-91-001.
  3. John Warwick, Truckee River spill model, University of Nevada-Reno (2002).
  4. Brock, J.T., C.L. Caupp, and H.M. Runke, Evaluation of water quality using DSSAM III under various conditions of nutrient loadings from municipal wastewater and agricultural sources: Truckee River, Nevada.. Bureau of Water Quality Planning, Nevada Division of Environmental Protection, Carson City, Nevada (1992)