DVB 3D-TV

Last updated
DVB 3D-TV Logo DVB-3DTV logo.jpg
DVB 3D-TV Logo

DVB 3D-TV is a new standard that partially came out at the end of 2010 which included techniques and procedures to send a three-dimensional video signal through actual DVB transmission standards (Cable, Terrestrial or Satellite). Currently there is a commercial requirement text for 3D TV broadcasters and Set-top box manufacturers, but no technical information is in there.

Contents

Nowadays 3D television technology is already in its first steps regarding its standardization, now the major 3D market is in theaters and Blu-ray Disc players with stereoscopic systems, but in the near future it will be extended to diffusion, and later Free viewpoint television will come into our homes, which means the need of new coding and transmission standards.

Implantation

The implantation of first generation of DVB 3D-TV will be staggered:

3DTV signals

Diagram of an CSC or FCC 3DTV system 3D TV.JPG
Diagram of an CSC or FCC 3DTV system

Matrix of signal formats for 3DTV:

Compatibility level1st generation 3DTV2nd generation 3DTV3rd generation 3DTV
Level 4:

HD service compatible (CSC)

2D HD + MVC (L,R formed by matrixing: depth info)2D HD + MVC (Depth, occlusion and transparency data)
Level 3:

HD Frame compatible compatible (FCC)

Frame compatible + MPEG resolution extension (ex. SVC)
Level 2:

Conventional HD Frame compatible (CFC)

L and R in same HD frame
Level 1:

Conventional HD display compatible (CDC)

Color anaglyph

Frame sequential

Frame sequential 3D video Frame sequential 3D.jpg
Frame sequential 3D video

Regarding how a signal once it's decoded is sent to the display, current stereoscopic systems use a frame-sequential 3D signal. Left and right frames are sent alternately to the display and by diverse systems like shuttered glasses or polarized glasses are then shown to each eye. This involves that the real frame frequency halves the video frame frequency.

Technical features

Frame compatible

In Phase 1 system, only frame-sequential 3D is allowed, using frame compatible (CFC) format. This is made by a spatial multiplex that combines the left and right video sequences in one HD stream which is coded with H.264 as a single image. This allows to handle video as normal HD video using typical channels and interfaces like HDMI, which is possible in this 1.4a version. Frame compatible (CFC) model is also compatible with 2D HD mode in the same channel, adding some signalling for switching from 2D to 3D.

There are basically two ways to do spatial multiplex: Side by side and Top and bottom, but additional spatial multiplex formats have been proposed in order to improve picture quality by providing a better balance between the V and H resolution.

Side by side

Side by side format Side by side to FS3D.jpg
Side by side format

Side by side (SbS) format just put the left and right images one next to the other in an HD image. Because of this, a horizontal decimate is required which causes halving of horizontal definition. DVB 3D-TV supports following SbS formats:

1080i @ 50 Hz Side-by-Side
720p @ 50 Hz Side-by-Side
720p @ 59.94 / 60 Hz Side-by-Side
1080p @ 23.97 / 24 Hz Side-by-Side
1080i @ 59.94 / 60 Hz Side-by-Side

Top and bottom

Top and bottom format Top and bottom to FS3D.jpg
Top and bottom format

Top and Bottom (TaB) format put left and right images one above the other in a HD image. In this case, vertical decimate is required which causes halving of vertical definition. DVB 3D-TV supports following TaB formats:

1080p @ 23.97 / 24 Hz Top-and-Bottom
720p @ 59.94 / 60 Hz Top-and-Bottom
720p @ 50 /60 Hz
1080p @ 24 Hz

Graphics and text

There are basically two types of text displayed on screen that need additional broadcasting information to be displayed on a 3D display:

Signaling

The main function of signaling for frame compatible 3DTV is to signal the presence of a 3D or 2D video stream. It must be also possible to include in the broadcast signal information about the pixel arrangement used to decimate the master HDTV full samples/line pictures to create the anamorphic version, if 3D is available. It's interesting to signal also for 3D receivers the 3D events that are available, for which 3D availability should appear on EPG. For future service compatible (CSC) 3DTV, signal that a 3D version of a 2D service or event is being simulcast, and vice versa will be needed.

3DTV broadcast in future

Multiview

Multiview video coding is a compression standard appended from H.264/MPEG-4 AVC which allows send stereoscopic 3D video without resolution loss due to spatial multiplex, and reducing overhead of sending 2 HD images up to 50% and in a single video stream. It is used in Blu-ray players, but at the moment it's not applicable to broadcast because of the processing time for encoding, which uses motion compensation algorithms. Nevertheless, there have been some experiments with MVC 3D broadcast by Fraunhofer society [3] over 2nd generation DVB (DVB-T2, DVB-C2 and DVB-S2).

Free viewpoint

Total Free viewpoint television can be reached by capturing multiple views and extracting 2D+depth information from them to create a 3D model of the scene. Currently this system is being investigated, but the coding complexity and great bandwidth requirements make current broadcasting applications using Multiview Video Coding impractical, so a totally new compression scheme and capture techniques need to be investigated.

See also

Related Research Articles

Digital television Transmission of audio and video by digitally processed and multiplexed signal

Digital television (DTV) is the transmission of television audiovisual signals using digital encoding, in contrast to the earlier analog television technology which used analog signals. At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s. Modern digital television is transmitted in high definition (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio in contrast to the narrower format of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

Video Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types.

Digital Video Broadcasting open standard for digital television broadcasting

Digital Video Broadcasting (DVB) is a set of international open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium, and are published by a Joint Technical Committee (JTC) of the European Telecommunications Standards Institute (ETSI), European Committee for Electrotechnical Standardization (CENELEC) and European Broadcasting Union (EBU).

Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, Advanced Video Coding, is a video compression standard based on block-oriented, motion-compensated integer-DCT coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports resolutions up to and including 8K UHD.

DVB-T, short for Digital Video Broadcasting — Terrestrial, is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in Singapore in February, 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point. It is also used in the US by Amateur television operators.

DVB-C stands for "Digital Video Broadcasting - Cable" and it is the DVB European consortium standard for the broadcast transmission of digital television over cable. This system transmits an MPEG-2 or MPEG-4 family digital audio/digital video stream, using a QAM modulation with channel coding. The standard was first published by the ETSI in 1994, and subsequently became the most widely used transmission system for digital cable television in Europe, Asia and South America. It is deployed worldwide in systems ranging from the larger cable television networks (CATV) down to smaller satellite master antenna TV (SMATV) systems.

Advanced Television Systems Committee (ATSC) standards are an American set of standards for digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, and South Korea. Several former NTSC users, in particular Japan, have not used ATSC during their digital television transition, because they adopted their own system called ISDB.

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

Broadcast television systems are the encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

HD-MAC was a proposed broadcast television systems standard by the European Commission in 1986, a part of Eureka 95 project. It is an early attempt by the EEC to provide High-definition television (HDTV) in Europe. It is a complex mix of analogue signal, multiplexed with digital sound, and assistance data for decoding (DATV). The video signal was encoded with a modified D2-MAC encoder.

High-definition video is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical scan lines or 576 vertical lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal, by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

Multiplexed Analogue Components

Multiplexed analogue components (MAC) was a satellite television transmission standard, originally proposed for use on a Europe-wide terrestrial HDTV system, although it was never used terrestrially.

In television technology, Active Format Description (AFD) is a standard set of codes that can be sent in the MPEG video stream or in the baseband SDI video signal that carries information about their aspect ratio and active picture characteristics. It has been used by television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format. It has also been used by broadcasters to dynamically control how down-conversion equipment formats widescreen 16:9 pictures for 4:3 displays.

DVB-T2 is an abbreviation for "Digital Video Broadcasting — Second Generation Terrestrial"; it is the extension of the television standard DVB-T, issued by the consortium DVB, devised for the broadcast transmission of digital terrestrial television. DVB has been standardized by ETSI.

ATSC-M/H is a U.S. standard for mobile digital TV that allows TV broadcasts to be received by mobile devices.

TDVision Systems Inc is a company that has designed products and system architectures for Stereoscopic Video Coding, Stereoscopic video games, and Head Mounted Display. The company was founded by Manuel Gutierrez Novelo and Isidoro Pessah in Mexico in 2001 and moved to the United States in 2004.

Teletext was introduced in the analogue television in the 80's, leading to a limited interaction with television sets to obtain information about things like the schedule and weather. But nowadays this concept goes even far away and a new and improved way of interaction with the user has been developed. The early private broadcasters, as Canal+, were the pioneers in adopting this new form and today are preceded by their digital formats.

High-definition television (HD) describes a television system providing an image resolution of substantially higher resolution than the previous generation of technologies. The term has been used since 1936, but in modern times refers to the generation following standard-definition television (SDTV), often abbreviated to HDTV or HD-TV. It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television, and Blu-ray Discs.

3D television Television that conveys depth perception to the viewer

3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. As of 2019, most 3D TV sets and services are no longer available.

2D Plus Delta is a method of encoding 3D image listed as a part of MPEG2 and MPEG4 standards, specifically on the H.264 implementation of Multiview Video Coding extension. This technology originally started as a proprietary method for Stereoscopic Video Coding and content deployment that utilizes the Left or Right channel as the 2D version and the optimized difference or disparity (Delta) between that image channel view and a second eye image view is injected into the videostream as user_data, secondary stream, independent stream, enhancement layer or NALu for deployment. The Delta data can be either a spatial stereo disparity, temporal predictive, bidirectional or optimized motion compensation.

References

  1. "Sky 3DTV site" . Retrieved 2010-12-02.
  2. "Canal+3D site". Archived from the original on 2010-10-02. Retrieved 2010-12-02.
  3. "MVC 3D signal broadcast". Fraunhofer society. 2010. Retrieved 2010-12-02.