Degenerate conic

Last updated
Degenerate conics
Kegs-ausg-sg-s.svg
Kegs-ausg-pg-s.svg
Kegs-ausg-1g-s.svg
Kegs-ausg-pu-s.svg

In geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials. [note 1]

Contents

Using the alternative definition of the conic as the intersection in three-dimensional space of a plane and a double cone, a conic is degenerate if the plane goes through the vertex of the cones.

In the real plane, a degenerate conic can be two lines that may or may not be parallel, a single line (either two coinciding lines or the union of a line and the line at infinity), a single point (in fact, two complex conjugate lines), or the null set (twice the line at infinity or two parallel complex conjugate lines).

All these degenerate conics may occur in pencils of conics. That is, if two real non-degenerated conics are defined by quadratic polynomial equations f = 0 and g = 0, the conics of equations af + bg = 0 form a pencil, which contains one or three degenerate conics. For any degenerate conic in the real plane, one may choose f and g so that the given degenerate conic belongs to the pencil they determine.

Examples

Pencils of circles: in the pencil of red circles, the only degenerate conic is the horizontal axis; the pencil of blue circles has three degenerate conics, the vertical axis and two circles of radius zero. Apollonian circles.svg
Pencils of circles: in the pencil of red circles, the only degenerate conic is the horizontal axis; the pencil of blue circles has three degenerate conics, the vertical axis and two circles of radius zero.

The conic section with equation is degenerate as its equation can be written as , and corresponds to two intersecting lines forming an "X". This degenerate conic occurs as the limit case in the pencil of hyperbolas of equations The limiting case is an example of a degenerate conic consisting of twice the line at infinity.

Similarly, the conic section with equation , which has only one real point, is degenerate, as is factorable as over the complex numbers. The conic consists thus of two complex conjugate lines that intersect in the unique real point, , of the conic.

The pencil of ellipses of equations degenerates, for , into two parallel lines and, for , into a double line.

The pencil of circles of equations degenerates for into two lines, the line at infinity and the line of equation .

Classification

Over the complex projective plane there are only two types of degenerate conics – two different lines, which necessarily intersect in one point, or one double line. Any degenerate conic may be transformed by a projective transformation into any other degenerate conic of the same type.

Over the real affine plane the situation is more complicated. A degenerate real conic may be:

For any two degenerate conics of the same class, there are affine transformations mapping the first conic to the second one.

Discriminant

The degenerate hyperbola
3
x
2
-
2
x
y
-
y
2
-
6
x
+
10
y
-
9
=
0
,
{\displaystyle 3x^{2}-2xy-y^{2}-6x+10y-9=0,}
which factors as
(
x
-
y
+
1
)
(
3
x
+
y
-
9
)
=
0
,
{\displaystyle (x-y+1)(3x+y-9)=0,}
is the union of the red and blue loci. Intersecting Lines.svg
The degenerate hyperbola which factors as is the union of the red and blue loci.
The degenerate parabola
9
x
2
+
12
x
y
+
4
y
2
-
54
x
-
36
y
+
72
{\displaystyle 9x^{2}+12xy+4y^{2}-54x-36y+72}
=
0
,
{\displaystyle =0,}
which factors as
(
3
x
+
2
y
-
6
)
(
3
x
+
2
y
-
12
)
=
0
,
{\displaystyle (3x+2y-6)(3x+2y-12)=0,}
is the union of the red and blue loci. Parallel Lines.svg
The degenerate parabola which factors as is the union of the red and blue loci.

Non-degenerate real conics can be classified as ellipses, parabolas, or hyperbolas by the discriminant of the non-homogeneous form , which is the determinant of the matrix

the matrix of the quadratic form in . This determinant is positive, zero, or negative as the conic is, respectively, an ellipse, a parabola, or a hyperbola.

Analogously, a conic can be classified as non-degenerate or degenerate according to the discriminant of the homogeneous quadratic form in . [1] [2] :p.16 Here the affine form is homogenized to

the discriminant of this form is the determinant of the matrix

The conic is degenerate if and only if the determinant of this matrix equals zero. In this case, we have the following possibilities:

The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3] :p.108

Relation to intersection of a plane and a cone

Conics, also known as conic sections to emphasize their three-dimensional geometry, arise as the intersection of a plane with a cone. Degeneracy occurs when the plane contains the apex of the cone or when the cone degenerates to a cylinder and the plane is parallel to the axis of the cylinder. See Conic section#Degenerate cases for details.

Applications

Degenerate conics, as with degenerate algebraic varieties generally, arise as limits of non-degenerate conics, and are important in compactification of moduli spaces of curves.

For example, the pencil of curves (1-dimensional linear system of conics) defined by is non-degenerate for but is degenerate for concretely, it is an ellipse for two parallel lines for and a hyperbola with – throughout, one axis has length 2 and the other has length which is infinity for

Such families arise naturally – given four points in general linear position (no three on a line), there is a pencil of conics through them (five points determine a conic, four points leave one parameter free), of which three are degenerate, each consisting of a pair of lines, corresponding to the ways of choosing 2 pairs of points from 4 points (counting via the multinomial coefficient).

External video
Nuvola apps kaboodle.svg Type I linear system, (Coffman).

For example, given the four points the pencil of conics through them can be parameterized as yielding the following pencil; in all cases the center is at the origin: [note 2]

(dividing by and taking the limit as yields )

Note that this parametrization has a symmetry, where inverting the sign of a reverses x and y. In the terminology of ( Levy 1964 ), this is a Type I linear system of conics, and is animated in the linked video.

A striking application of such a family is in ( Faucette 1996 ) which gives a geometric solution to a quartic equation by considering the pencil of conics through the four roots of the quartic, and identifying the three degenerate conics with the three roots of the resolvent cubic.

Pappus's hexagon theorem is the special case of Pascal's theorem, when a conic degenerates to two lines.

Degeneration

In the complex projective plane, all conics are equivalent, and can degenerate to either two different lines or one double line.

In the real affine plane:

Degenerate conics can degenerate further to more special degenerate conics, as indicated by the dimensions of the spaces and points at infinity.

Points to define

A general conic is defined by five points: given five points in general position, there is a unique conic passing through them. If three of these points lie on a line, then the conic is reducible, and may or may not be unique. If no four points are collinear, then five points define a unique conic (degenerate if three points are collinear, but the other two points determine the unique other line). If four points are collinear, however, then there is not a unique conic passing through them – one line passing through the four points, and the remaining line passes through the other point, but the angle is undefined, leaving 1 parameter free. If all five points are collinear, then the remaining line is free, which leaves 2 parameters free.

Given four points in general linear position (no three collinear; in particular, no two coincident), there are exactly three pairs of lines (degenerate conics) passing through them, which will in general be intersecting, unless the points form a trapezoid (one pair is parallel) or a parallelogram (two pairs are parallel).

Given three points, if they are non-collinear, there are three pairs of parallel lines passing through them – choose two to define one line, and the third for the parallel line to pass through, by the parallel postulate.

Given two distinct points, there is a unique double line through them.

Notes

  1. Some authors consider conics without real points as degenerate, but this is not a commonly accepted convention.[ citation needed ]
  2. A simpler parametrization is given by which are the affine combinations of the equations and corresponding the parallel vertical lines and horizontal lines, and results in the degenerate conics falling at the standard points of

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Projective geometry</span> Type of geometry

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.

In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings.

In geometry and topology, the line at infinity is a projective line that is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at infinity is also called the ideal line.

<span class="mw-page-title-main">Pascal's theorem</span> Theorem on the collinearity of three points generated from a hexagon inscribed on a conic

In projective geometry, Pascal's theorem states that if six arbitrary points are chosen on a conic and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it or by a single letter.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci, singular focus, are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Eccentricity (mathematics)</span> Characteristic of conic sections

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

<span class="mw-page-title-main">Pappus's hexagon theorem</span> Geometry theorem

In mathematics, Pappus's hexagon theorem states that

<span class="mw-page-title-main">Cassini oval</span> Class of quartic plane curves

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

<span class="mw-page-title-main">Pencil (geometry)</span> Family of geometric objects with a common property

In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.

In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4. Other types of condition that are of interest include tangency to a given line L.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In Euclidean and projective geometry, five points determine a conic, just as two (distinct) points determine a line. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

<span class="mw-page-title-main">Steiner conic</span>

The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field.

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

References