Diffeology

Last updated

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

Contents

The concept was first introduced by Jean-Marie Souriau in the 1980s under the name Espace différentiel [1] [2] and later developed by his students Paul Donato [3] and Patrick Iglesias. [4] [5] A related idea was introduced by Kuo-Tsaï Chen (陳國才, Chen Guocai) in the 1970s, using convex sets instead of open sets for the domains of the plots. [6]

Intuitive definition

Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the differential structure from to the manifold.

A diffeological space consists of a set together with a collection of maps (called a diffeology) satisfying suitable axioms, which generalise the notion of an atlas on a manifold. In this way, the relationship between smooth manifolds and diffeological spaces is analogous to the relationship between topological manifolds and topological spaces.

More precisely, a smooth manifold can be equivalently defined as a diffeological space which is locally diffeomorphic to . Indeed, every smooth manifold has a natural diffeology, consisting of its maximal atlas (all the smooth maps from open subsets of to the manifold). This abstract point of view makes no reference to a specific atlas (and therefore to a fixed dimension ) nor to the underlying topological space, and is therefore suitable to treat examples of objects more general than manifolds.

Formal definition

A diffeology on a set consists of a collection of maps, called plots or parametrizations, from open subsets of () to such that the following axioms hold:

Note that the domains of different plots can be subsets of for different values of ; in particular, any diffeology contains the elements of its underlying set as the plots with . A set together with a diffeology is called a diffeological space.

More abstractly, a diffeological space is a concrete sheaf on the site of open subsets of , for all , and open covers. [7]

Morphisms

A map between diffeological spaces is called smooth if and only if its composite with any plot of the first space is a plot of the second space. It is called a diffeomorphism if it is smooth, bijective, and its inverse is also smooth. By construction, given a diffeological space , its plots defined on are precisely all the smooth maps from to .

Diffeological spaces form a category where the morphisms are smooth maps. The category of diffeological spaces is closed under many categorical operations: for instance, it is Cartesian closed, complete and cocomplete, and more generally it is a quasitopos. [7]

D-topology

Any diffeological space is automatically a topological space with the so-called D-topology: [8] the final topology such that all plots are continuous (with respect to the euclidean topology on ).

In other words, a subset is open if and only if is open for any plot on . Actually, the D-topology is completely determined by smooth curves, i.e. a subset is open if and only if is open for any smooth map . [9]

The D-topology is automatically locally path-connected [10] and a differentiable map between diffeological spaces is automatically continuous between their D-topologies. [5]

Additional structures

A Cartan-De Rham calculus can be developed in the framework of diffeologies, as well as a suitable adaptation of the notions of fiber bundles, homotopy, etc. [5] However, there is not a canonical definition of tangent spaces and tangent bundles for diffeological spaces. [11]

Examples

Trivial examples

Manifolds

Constructions from other diffeological spaces

Wire/spaghetti diffeology

The wire diffeology (or spaghetti diffeology) on is the diffeology whose plots factor locally through . More precisely, a map is a plot if and only if for every there is an open neighbourhood of such that for two plots and . This diffeology does not coincide with the standard diffeology on : for instance, the identity is not a plot in the wire diffeology. [5]

This example can be enlarged to diffeologies whose plots factor locally through . More generally, one can consider the rank--restricted diffeology on a smooth manifold : a map is a plot if and only if the rank of its differential is less or equal than . For one recovers the wire diffeology. [17]

Other examples

Subductions and inductions

Analogously to the notions of submersions and immersions between manifolds, there are two special classes of morphisms between diffeological spaces. A subduction is a surjective function between diffeological spaces such that the diffeology of is the pushforward of the diffeology of . Similarly, an induction is an injective function between diffeological spaces such that the diffeology of is the pullback of the diffeology of . Note that subductions and inductions are automatically smooth.

When and are smooth manifolds, a subduction (respectively, induction) between them is precisely a surjective submersion (respectively, injective immersion). Moreover, these notions enjoy similar properties to submersion and immersions, such as:

An embedding is an induction which is also a homeomorphism with its image, with respect to the subset topology induced from the D-topology of the codomain. For diffeologies underlying smooth manifolds, this boils down to the standard notion of embedding.

Related Research Articles

<span class="mw-page-title-main">Connected space</span> Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

<span class="mw-page-title-main">Homeomorphism</span> Mapping which preserves all topological properties of a given space

In the mathematical field of topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

<span class="mw-page-title-main">Quotient space (topology)</span> Topological space construction

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map. In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.

<span class="mw-page-title-main">Geometric topology</span> Branch of mathematics studying (smooth) functions of manifolds

In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

<span class="mw-page-title-main">Smoothness</span> Number of derivatives of a function (mathematics)

In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere. At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition.

References

  1. Souriau, J. M. (1980), García, P. L.; Pérez-Rendón, A.; Souriau, J. M. (eds.), "Groupes differentiels", Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics, Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 836, pp. 91–128, doi:10.1007/bfb0089728, ISBN   978-3-540-10275-5 , retrieved 2022-01-16
  2. Souriau, Jean-Marie (1984), Denardo, G.; Ghirardi, G.; Weber, T. (eds.), "Groupes différentiels et physique mathématique", Group Theoretical Methods in Physics, Lecture Notes in Physics, Berlin/Heidelberg: Springer-Verlag, vol. 201, pp. 511–513, doi:10.1007/bfb0016198, ISBN   978-3-540-13335-3 , retrieved 2022-01-16
  3. Donato, Paul (1984). Revêtement et groupe fondamental des espaces différentiels homogènes[Coverings and fundamental groups of homogeneous differential spaces] (in French). Marseille: ScD thesis, Université de Provence.
  4. Iglesias, Patrick (1985). Fibrés difféologiques et homotopie [Diffeological fiber bundles and homotopy](PDF) (in French). Marseille: ScD thesis, Université de Provence.
  5. 1 2 3 4 Iglesias-Zemmour, Patrick (2013-04-09). Diffeology. Mathematical Surveys and Monographs. Vol. 185. American Mathematical Society. doi:10.1090/surv/185. ISBN   978-0-8218-9131-5.
  6. Chen, Kuo-Tsai (1977). "Iterated path integrals". Bulletin of the American Mathematical Society. 83 (5): 831–879. doi: 10.1090/S0002-9904-1977-14320-6 . ISSN   0002-9904.
  7. 1 2 Baez, John; Hoffnung, Alexander (2011). "Convenient categories of smooth spaces". Transactions of the American Mathematical Society. 363 (11): 5789–5825. arXiv: 0807.1704 . doi: 10.1090/S0002-9947-2011-05107-X . ISSN   0002-9947.
  8. Iglesias, Patrick (1985). Fibrés difféologiques et homotopie [Diffeological fiber bundles and homotopy](PDF) (in French). Marseille: ScD thesis, Université de Provence. Definition 1.2.3
  9. 1 2 Christensen, John Daniel; Sinnamon, Gordon; Wu, Enxin (2014-10-09). "The D -topology for diffeological spaces". Pacific Journal of Mathematics. 272 (1): 87–110. arXiv: 1302.2935 . doi: 10.2140/pjm.2014.272.87 . ISSN   0030-8730.
  10. Laubinger, Martin (2006). "Diffeological spaces". Proyecciones. 25 (2): 151–178. doi: 10.4067/S0716-09172006000200003 . ISSN   0717-6279.
  11. Christensen, Daniel; Wu, Enxin (2016). "Tangent spaces and tangent bundles for diffeological spaces". Cahiers de Topologie et Geométrie Différentielle Catégoriques. 57 (1): 3–50. arXiv: 1411.5425 .
  12. Iglesias-Zemmour, Patrick; Karshon, Yael; Zadka, Moshe (2010). "Orbifolds as diffeologies" (PDF). Transactions of the American Mathematical Society. 362 (6): 2811–2831. doi:10.1090/S0002-9947-10-05006-3. JSTOR   25677806. S2CID   15210173.
  13. Gürer, Serap; Iglesias-Zemmour, Patrick (2019). "Differential forms on manifolds with boundary and corners". Indagationes Mathematicae. 30 (5): 920–929. doi: 10.1016/j.indag.2019.07.004 .
  14. Hain, Richard M. (1979). "A characterization of smooth functions defined on a Banach space". Proceedings of the American Mathematical Society. 77 (1): 63–67. doi: 10.1090/S0002-9939-1979-0539632-8 . ISSN   0002-9939.
  15. Losik, Mark (1992). "О многообразиях Фреше как диффеологических пространствах" [Fréchet manifolds as diffeological spaces]. Izv. Vyssh. Uchebn. Zaved. Mat. (in Russian). 5: 36–42 via All-Russian Mathematical Portal.
  16. Losik, Mark (1994). "Categorical differential geometry". Cahiers de Topologie et Géométrie Différentielle Catégoriques. 35 (4): 274–290.
  17. Blohmann, Christian (2023-01-06). "Elastic diffeological spaces". arXiv: 2301.02583 [math.DG].
  18. Donato, Paul; Iglesias, Patrick (1985). "Exemples de groupes difféologiques: flots irrationnels sur le tore" [Examples of diffeological groups: irrational flows on the torus]. C. R. Acad. Sci. Paris Sér. I (in French). 301 (4): 127–130. MR   0799609.