Disjunction introduction

Last updated
Disjunction introduction
Type Rule of inference
Field Propositional calculus
StatementIf is true, then or must be true.
Symbolic statement

Disjunction introduction or addition (also called or introduction) [1] [2] [3] is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true.

An example in English:

Socrates is a man.
Therefore, Socrates is a man or pigs are flying in formation over the English Channel.

The rule can be expressed as:

where the rule is that whenever instances of "" appear on lines of a proof, "" can be placed on a subsequent line.

More generally it's also a simple valid argument form, this means that if the premise is true, then the conclusion is also true as any rule of inference should be, and an immediate inference, as it has a single proposition in its premises.

Disjunction introduction is not a rule in some paraconsistent logics because in combination with other rules of logic, it leads to explosion (i.e. everything becomes provable) and paraconsistent logic tries to avoid explosion and to be able to reason with contradictions. One of the solutions is to introduce disjunction with over rules. See Paraconsistent logic § Tradeoffs.

Formal notation

The disjunction introduction rule may be written in sequent notation:

where is a metalogical symbol meaning that is a syntactic consequence of in some logical system;

and expressed as a truth-functional tautology or theorem of propositional logic:

where and are propositions expressed in some formal system.

Related Research Articles

Conjunction introduction is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof. It is the inference that if the proposition is true, and the proposition is true, then the logical conjunction of the two propositions and is true. For example, if it is true that "it is raining", and it is true that "the cat is inside", then it is true that "it is raining and the cat is inside". The rule can be stated:

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

In propositional logic, disjunction elimination, is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof. It is the inference that if a statement implies a statement and a statement also implies , then if either or is true, then has to be true. The reasoning is simple: since at least one of the statements P and R is true, and since either of them would be sufficient to entail Q, Q is certainly true.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Logical conjunction Logical connective AND

In logic, mathematics and linguistics, And is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or .

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

De Morgans laws Pair of logical equivalences

In propositional logic and Boolean algebra, De Morgan's laws are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

Understood in a narrow sense, philosophical logic is the area of philosophy that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition can be inferred from it; this is known as deductive explosion.

In propositional logic, conjunction elimination is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true. The rule makes it possible to shorten longer proofs by deriving one of the conjuncts of a conjunction on a line by itself.

Constructive dilemma is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too. Constructive dilemma is the disjunctive version of modus ponens, whereas, destructive dilemma is the disjunctive version of modus tollens. The constructive dilemma rule can be stated:

Destructive dilemma is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The destructive dilemma rule can be stated:

In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic. It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:

Absorption is a valid argument form and rule of inference of propositional logic. The rule states that if implies , then implies and . The rule makes it possible to introduce conjunctions to proofs. It is called the law of absorption because the term is "absorbed" by the term in the consequent. The rule can be stated:

In propositional logic, tautology is either of two commonly used rules of replacement. The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs. They are:

References

  1. Hurley, Patrick J. (2014). A Concise Introduction to Logic (12th ed.). Cengage. pp. 401–402, 707. ISBN   978-1-285-19654-1.
  2. Moore, Brooke Noel; Parker, Richard (2015). "Deductive Arguments II Truth-Functional Logic" . Critical Thinking (11th ed.). New York: McGraw Hill. p. 311. ISBN   978-0-07-811914-9.
  3. Copi, Irving M.; Cohen, Carl; McMahon, Kenneth (2014). Introduction to Logic (14th ed.). Pearson. pp. 370, 618. ISBN   978-1-292-02482-0.