Exportation (logic)

Last updated
Exportation
Type Rule of replacement
Field Propositional calculus
Symbolic statement

Exportation [1] [2] [3] [4] is a valid rule of replacement in propositional logic. The rule allows conditional statements having conjunctive antecedents to be replaced by statements having conditional consequents and vice versa in logical proofs. It is the rule that:

Contents

Where "" is a metalogical symbol representing "can be replaced in a proof with." In strict terminology, is the law of exportation, for it "exports" a proposition from the antecedent of to its consequent. Its converse, the law of importation, , "imports" a proposition from the consequent of to its antecedent.

Formal notation

The exportation rule may be written in sequent notation:

where is a metalogical symbol meaning that is a syntactic equivalent of in some logical system;

or in rule form:

,

where the rule is that wherever an instance of "" appears on a line of a proof, it can be replaced with "", and vice versa.

Import-export is a name given to the statement as a theorem or truth-functional tautology of propositional logic:

where , , and are propositions expressed in some logical system.

Natural language

Truth values

At any time, if P→Q is true, it can be replaced by P→(P∧Q).
One possible case for P→Q is for P to be true and Q to be true; thus P∧Q is also true, and P→(P∧Q) is true.
Another possible case sets P as false and Q as true. Thus, P∧Q is false and P→(P∧Q) is false; false→false is true.
The last case occurs when both P and Q are false. Thus, P∧Q is false and P→(P∧Q) is true.

Example

It rains and the sun shines implies that there is a rainbow.
Thus, if it rains, then the sun shines implies that there is a rainbow.

If my car is on, when I switch the gear to D the car starts going. If my car is on and I have switched the gear to D, then the car must start going.

Proof

The following proof uses a classically valid chain of equivalences. Rules used are material implication, De Morgan's law, and the associative property of conjunction.

PropositionDerivation
Given
material implication
material implication
associativity
De Morgan's law
material implication

Relation to functions

Exportation is associated with currying via the Curry–Howard correspondence.[ citation needed ]

Related Research Articles

In propositional logic, biconditional introduction is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements. The rule makes it possible to introduce a biconditional statement into a logical proof. If is true, and if is true, then one may infer that is true. For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive". Biconditional introduction is the converse of biconditional elimination. The rule can be stated formally as:

Biconditional elimination is the name of two valid rules of inference of propositional logic. It allows for one to infer a conditional from a biconditional. If is true, then one may infer that is true, and also that is true. For example, if it's true that I'm breathing if and only if I'm alive, then it's true that if I'm breathing, I'm alive; likewise, it's true that if I'm alive, I'm breathing. The rules can be stated formally as:

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

In propositional logic, material implication is a valid rule of replacement that allows for a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- or and that either form can replace the other in logical proofs. In other words, if is true, then must also be true, while if is not true, then cannot be true either; additionally, when is not true, may be either true or false.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

<span class="mw-page-title-main">Material conditional</span> Logical connective

The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.

Constructive dilemma is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too. Constructive dilemma is the disjunctive version of modus ponens, whereas, destructive dilemma is the disjunctive version of modus tollens. The constructive dilemma rule can be stated:

Destructive dilemma is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The destructive dilemma rule can be stated:

In propositional logic, transposition is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. It is very closely related to the rule of inference modus tollens. It is the rule that

In mathematical logic and computer science the symbol ⊢ has taken the name turnstile because of its resemblance to a typical turnstile if viewed from above. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails".

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

Absorption is a valid argument form and rule of inference of propositional logic. The rule states that if implies , then implies and . The rule makes it possible to introduce conjunctions to proofs. It is called the law of absorption because the term is "absorbed" by the term in the consequent. The rule can be stated:

In propositional logic, tautology is either of two commonly used rules of replacement. The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs. They are:

References

  1. Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition . Wadsworth Publishing. pp. 364–5. ISBN   9780534145156.
  2. Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall. p. 371.
  3. Moore and Parker
  4. "Rules of Replacement".