Energy condition

Last updated

In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.

Contents

Energy conditions are not physical constraints per se, but are rather mathematically imposed boundary conditions that attempt to capture a belief that "energy should be positive". [1] Many energy conditions are known to not correspond to physical reality—for example, the observable effects of dark energy are well known to violate the strong energy condition. [2] [3]

In general relativity, energy conditions are often used (and required) in proofs of various important theorems about black holes, such as the no hair theorem or the laws of black hole thermodynamics.

Motivation

In general relativity and allied theories, the distribution of the mass, momentum, and stress due to matter and to any non-gravitational fields is described by the energy–momentum tensor (or matter tensor) . However, the Einstein field equation in itself does not specify what kinds of states of matter or non-gravitational fields are admissible in a spacetime model. This is both a strength, since a good general theory of gravitation should be maximally independent of any assumptions concerning non-gravitational physics, and a weakness, because without some further criterion the Einstein field equation admits putative solutions with properties most physicists regard as unphysical, i.e. too weird to resemble anything in the real universe even approximately.

The energy conditions represent such criteria. Roughly speaking, they crudely describe properties common to all (or almost all) states of matter and all non-gravitational fields that are well-established in physics while being sufficiently strong to rule out many unphysical "solutions" of the Einstein field equation.

Mathematically speaking, the most apparent distinguishing feature of the energy conditions is that they are essentially restrictions on the eigenvalues and eigenvectors of the matter tensor. A more subtle but no less important feature is that they are imposed eventwise, at the level of tangent spaces. Therefore, they have no hope of ruling out objectionable global features, such as closed timelike curves.

Some observable quantities

In order to understand the statements of the various energy conditions, one must be familiar with the physical interpretation of some scalar and vector quantities constructed from arbitrary timelike or null vectors and the matter tensor.

First, a unit timelike vector field can be interpreted as defining the world lines of some family of (possibly noninertial) ideal observers. Then the scalar field

can be interpreted as the total mass–energy density (matter plus field energy of any non-gravitational fields) measured by the observer from our family (at each event on his world line). Similarly, the vector field with components represents (after a projection) the momentum measured by our observers.

Second, given an arbitrary null vector field the scalar field

can be considered a kind of limiting case of the mass–energy density.

Third, in the case of general relativity, given an arbitrary timelike vector field , again interpreted as describing the motion of a family of ideal observers, the Raychaudhuri scalar is the scalar field obtained by taking the trace of the tidal tensor corresponding to those observers at each event:

This quantity plays a crucial role in Raychaudhuri's equation. Then from Einstein field equation we immediately obtain

where is the trace of the matter tensor.

Mathematical statement

There are several alternative energy conditions in common use:

Null energy condition

The null energy condition stipulates that for every future-pointing null vector field,

Each of these has an averaged version, in which the properties noted above are to hold only on average along the flowlines of the appropriate vector fields. Otherwise, the Casimir effect leads to exceptions. For example, the averaged null energy condition states that for every flowline (integral curve) of the null vector field we must have

Weak energy condition

The weak energy condition stipulates that for every timelike vector field the matter density observed by the corresponding observers is always non-negative:

Dominant energy condition

The dominant energy condition stipulates that, in addition to the weak energy condition holding true, for every future-pointing causal vector field (either timelike or null) the vector field must be a future-pointing causal vector. That is, mass–energy can never be observed to be flowing faster than light.

Strong energy condition

The strong energy condition stipulates that for every timelike vector field, the trace of the tidal tensor measured by the corresponding observers is always non-negative:

There are many classical matter configurations which violate the strong energy condition, at least from a mathematical perspective. For instance, a scalar field with a positive potential can violate this condition. Moreover, observations of dark energy/cosmological constant show that the strong energy condition fails to describe our universe, even when averaged across cosmological scales. Furthermore, it is strongly violated in any cosmological inflationary process (even one not driven by a scalar field). [3]

Perfect fluids

Implications among some energy conditions, in the case of a perfect fluid EnergyConditions.svg
Implications among some energy conditions, in the case of a perfect fluid

Perfect fluids possess a matter tensor of form

where is the four-velocity of the matter particles and where is the projection tensor onto the spatial hyperplane elements orthogonal to the four-velocity, at each event. (Notice that these hyperplane elements will not form a spatial hyperslice unless the velocity is vorticity-free, that is, irrotational.) With respect to a frame aligned with the motion of the matter particles, the components of the matter tensor take the diagonal form

Here, is the energy density and is the pressure.

The energy conditions can then be reformulated in terms of these eigenvalues:

The implications among these conditions are indicated in the figure at right. Note that some of these conditions allow negative pressure. Also, note that despite the names the strong energy condition does not imply the weak energy condition even in the context of perfect fluids.

Non-perfect fluids

Finally, there are proposals for extension of the energy conditions to spacetimes containing non-perfect fluids, where the second law of thermodynamics provides a natural Lyapunov function to probe both stability and causality, where the physical origin of the connection between stability and causality lies in the relationship between entropy and information. [4] These attempts generalize the Hawking-Ellis vacuum conservation theorem (according to which, if energy can enter an empty region faster than the speed of light, then the dominant energy condition is violated, and the energy density may become negative in some reference frame [5] ) to spacetimes containing out-of-equilibrium matter at finite temperature and chemical potential.

Indeed, the idea that there is a connection between causality violation and fluid instabilities has a long history. For example, in the words of W. Israel: “If the source of an effect can be delayed, it should be possible for a system to borrow energy from its ground state, and this implies instability”. [6] It is possible to show that this is a restatement of the Hawking-Ellis vacuum conservation theorem at finite temperature and chemical potential. [4] [5]

Attempts at falsifying the energy conditions

While the intent of the energy conditions is to provide simple criteria that rule out many unphysical situations while admitting any physically reasonable situation, in fact, at least when one introduces an effective field modeling of some quantum mechanical effects, some possible matter tensors which are known to be physically reasonable and even realistic because they have been experimentally verified, actually fail various energy conditions. In particular, in the Casimir effect, in the region between two conducting plates held parallel at a very small separation d, there is a negative energy density

between the plates. (Be mindful, though, that the Casimir effect is topological, in that the sign of the vacuum energy depends on both the geometry and topology of the configuration. Being negative for parallel plates, the vacuum energy is positive for a conducting sphere.) However, various quantum inequalities suggest that a suitable averaged energy condition may be satisfied in such cases. In particular, the averaged null energy condition is satisfied in the Casimir effect. Indeed, for energy–momentum tensors arising from effective field theories on Minkowski spacetime, the averaged null energy condition holds for everyday quantum fields. Extending these results is an open problem.

The strong energy condition is obeyed by all normal/Newtonian matter, but a false vacuum can violate it. Consider the linear barotropic equation state

where is the matter energy density, is the matter pressure, and is a constant. Then the strong energy condition requires ; but for the state known as a false vacuum, we have . [7]

See also

Notes

  1. Curiel, E. (2014). "A Primer on Energy Conditions". arXiv: 1405.0403 .
  2. Farnes, J.S. (2018). "A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework". Astronomy & Astrophysics. 620: A92. arXiv: 1712.07962 . Bibcode:2018A&A...620A..92F. doi:10.1051/0004-6361/201832898. S2CID   53600834.
  3. 1 2 Visser, Matt; Barceló, Carlos (2000). "Energy Conditions and Their Cosmological Implications". Cosmo-99. pp. 98–112. arXiv: gr-qc/0001099 . doi:10.1142/9789812792129_0014. ISBN   978-981-02-4456-9. S2CID   119446302.
  4. 1 2 Gavassino, Lorenzo; Antonelli, Marco; Haskell, Brynmor (2022-01-06). "Thermodynamic stability implies causality". Physical Review Letters. 128 (1): 010606. doi:10.1103/PhysRevLett.128.010606. ISSN   0031-9007.
  5. 1 2 Gavassino, Lorenzo (2022-10-03). "Can we make sense of dissipation without causality?". Physical Review X. 12 (4): 041001. doi:10.1103/PhysRevX.12.041001. ISSN   2160-3308.
  6. Israel, Werner (2009), Lacki, Jan; Ruegg, Henri; Wanders, Gérard (eds.), "Relativistic Thermodynamics", E.C.G. Stueckelberg, An Unconventional Figure of Twentieth Century Physics: Selected Scientific Papers with Commentaries, Basel: Birkhäuser, pp. 101–113, doi:10.1007/978-3-7643-8878-2_8, ISBN   978-3-7643-8878-2 , retrieved 2024-05-17
  7. G.F.R. Ellis; R. Maartens; M.A.H. MacCallum (2012). "Section 6.1". Relativistic Cosmology. Cambridge University Press.

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In mathematical physics, a null dust solution is a Lorentzian manifold in which the Einstein tensor is null. Such a spacetime can be interpreted as an exact solution of Einstein's field equation, in which the only mass–energy present in the spacetime is due to some kind of massless radiation.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.

In general relativity, the monochromatic electromagnetic plane wave spacetime is the analog of the monochromatic plane waves known from Maxwell's theory. The precise definition of the solution is quite complicated but very instructive.

The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant.

In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.

In general relativity, a scalar field solution is an exact solution of the Einstein field equation in which the gravitational field is due entirely to the field energy and momentum of a scalar field. Such a field may or may not be massless, and it may be taken to have minimal curvature coupling, or some other choice, such as conformal coupling.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.

References