Essentially unique

Last updated

In mathematics, the term essentially unique is used to describe a weaker form of uniqueness, where an object satisfying a property is "unique" only in the sense that all objects satisfying the property are equivalent to each other. The notion of essential uniqueness presupposes some form of "sameness", which is often formalized using an equivalence relation.

Contents

A related notion is a universal property, where an object is not only essentially unique, but unique up to a unique isomorphism [1] (meaning that it has trivial automorphism group). In general there can be more than one isomorphism between examples of an essentially unique object.

Examples

Set theory

At the most basic level, there is an essentially unique set of any given cardinality, whether one labels the elements or . In this case, the non-uniqueness of the isomorphism (e.g., match 1 to or 1 to ) is reflected in the symmetric group.

On the other hand, there is an essentially unique totally ordered set of any given finite cardinality that is unique up to unique isomorphism: if one writes and , then the only order-preserving isomorphism is the one which maps 1 to , 2 to , and 3 to .

Number theory

The fundamental theorem of arithmetic establishes that the factorization of any positive integer into prime numbers is essentially unique, i.e., unique up to the ordering of the prime factors. [2] [3]

Group theory

In the context of classification of groups, there is an essentially unique group containing exactly 2 elements. [3] Similarly, there is also an essentially unique group containing exactly 3 elements: the cyclic group of order three. In fact, regardless of how one chooses to write the three elements and denote the group operation, all such groups can be shown to be isomorphic to each other, and hence are "the same".

On the other hand, there does not exist an essentially unique group with exactly 4 elements, as there are in this case two non-isomorphic groups in total: the cyclic group of order 4 and the Klein four-group. [4]

Measure theory

There is an essentially unique measure that is translation-invariant, strictly positive and locally finite on the real line. In fact, any such measure must be a constant multiple of Lebesgue measure, specifying that the measure of the unit interval should be 1—before determining the solution uniquely.

Topology

There is an essentially unique two-dimensional, compact, simply connected manifold: the 2-sphere. In this case, it is unique up to homeomorphism.

In the area of topology known as knot theory, there is an analogue of the fundamental theorem of arithmetic: the decomposition of a knot into a sum of prime knots is essentially unique. [5]

Lie theory

A maximal compact subgroup of a semisimple Lie group may not be unique, but is unique up to conjugation.

Category theory

An object that is the limit or colimit over a given diagram is essentially unique, as there is a unique isomorphism to any other limiting/colimiting object. [6]

Coding theory

Given the task of using 24-bit words to store 12 bits of information in such a way that 7-bit errors can be detected and 3-bit errors can be corrected, the solution is essentially unique: the extended binary Golay code. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Modular arithmetic</span> Computation modulo a fixed integer

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.

<span class="mw-page-title-main">Free group</span> Mathematics concept

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

In mathematics, equality is a relationship between two quantities or, more generally, two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. Equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Graph isomorphism</span> Bijection between the vertex set of two graphs

In graph theory, an isomorphism of graphsG and H is a bijection between the vertex sets of G and H

In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In homotopy theory, the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants determines a topological property of a mapping.

In mathematics, categorification is the process of replacing set-theoretic theorems with category-theoretic analogues. Categorification, when done successfully, replaces sets with categories, functions with functors, and equations with natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, a skeleton of a category is a subcategory that, roughly speaking, does not contain any extraneous isomorphisms. In a certain sense, the skeleton of a category is the "smallest" equivalent category, which captures all "categorical properties" of the original. In fact, two categories are equivalent if and only if they have isomorphic skeletons. A category is called skeletal if isomorphic objects are necessarily identical.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann. The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure.

<span class="mw-page-title-main">Ordinal number</span> Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. For instance, Minkowski's question-mark function produces an isomorphism between the numerical ordering of the rational numbers and the numerical ordering of the dyadic rationals.

References

  1. "Universal property - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2019-11-22.
  2. Garnier, Rowan; Taylor, John (2009-11-09). Discrete Mathematics: Proofs, Structures and Applications, Third Edition. CRC Press. p. 452. ISBN   9781439812808.
  3. 1 2 Weisstein, Eric W. "Essentially Unique". mathworld.wolfram.com. Retrieved 2019-11-22.
  4. Corry, Scott. "Classification of Groups of Order n ≤ 8" (PDF). Lawrence University. Retrieved 2019-11-21.
  5. Lickorish, W. B. Raymond (2012-12-06). An Introduction to Knot Theory. Springer Science & Business Media. ISBN   9781461206910.
  6. "limit in nLab". ncatlab.org. Retrieved 2019-11-22.
  7. Baez, John (2015-12-01). "Golay Code". Visual Insight. American Mathematical Society . Retrieved 2017-12-02.