Translation (geometry)

Last updated
A translation moves every point of a figure or a space by the same amount in a given direction. Traslazione OK.svg
A translation moves every point of a figure or a space by the same amount in a given direction.

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.

Contents

As a function

If is a fixed vector, known as the translation vector, and is the initial position of some object, then the translation function will work as .

If is a translation, then the image of a subset under the function is the translate of by . The translate of by is often written .

Application in classical physics

In classical physics, translational motion is movement that changes the position of an object, as opposed to rotation. For example, according to Whittaker: [1]

If a body is moved from one position to another, and if the lines joining the initial and final points of each of the points of the body are a set of parallel straight lines of length , so that the orientation of the body in space is unaltered, the displacement is called a translation parallel to the direction of the lines, through a distance ℓ.

A translation is the operation changing the positions of all points of an object according to the formula

where is the same vector for each point of the object. The translation vector common to all points of the object describes a particular type of displacement of the object, usually called a linear displacement to distinguish it from displacements involving rotation, called angular displacements.

When considering spacetime, a change of time coordinate is considered to be a translation.

As an operator

The translation operator turns a function of the original position, , into a function of the final position, . In other words, is defined such that This operator is more abstract than a function, since defines a relationship between two functions, rather than the underlying vectors themselves. The translation operator can act on many kinds of functions, such as when the translation operator acts on a wavefunction, which is studied in the field of quantum mechanics.

As a group

The set of all translations forms the translation group, which is isomorphic to the space itself, and a normal subgroup of Euclidean group . The quotient group of by is isomorphic to the group of rigid motions which fix a particular origin point, the orthogonal group :

Because translation is commutative, the translation group is abelian. There are an infinite number of possible translations, so the translation group is an infinite group.

In the theory of relativity, due to the treatment of space and time as a single spacetime, translations can also refer to changes in the time coordinate. For example, the Galilean group and the Poincaré group include translations with respect to time.

Lattice groups

One kind of subgroup of the three-dimensional translation group are the lattice groups, which are infinite groups, but unlike the translation groups, are finitely generated. That is, a finite generating set generates the entire group.

Matrix representation

A translation is an affine transformation with no fixed points. Matrix multiplications always have the origin as a fixed point. Nevertheless, there is a common workaround using homogeneous coordinates to represent a translation of a vector space with matrix multiplication: Write the 3-dimensional vector using 4 homogeneous coordinates as . [2]

To translate an object by a vector , each homogeneous vector (written in homogeneous coordinates) can be multiplied by this translation matrix:

As shown below, the multiplication will give the expected result:

The inverse of a translation matrix can be obtained by reversing the direction of the vector:

Similarly, the product of translation matrices is given by adding the vectors:

Because addition of vectors is commutative, multiplication of translation matrices is therefore also commutative (unlike multiplication of arbitrary matrices).

Translation of axes

While geometric translation is often viewed as an active process that changes the position of a geometric object, a similar result can be achieved by a passive transformation that moves the coordinate system itself but leaves the object fixed. The passive version of an active geometric translation is known as a translation of axes.

Translational symmetry

An object that looks the same before and after translation is said to have translational symmetry. A common example is a periodic function, which is an eigenfunction of a translation operator.

Translations of a graph

Compared to the graph y = f(x), the graph y = f(x - a) has been translated horizontally by a, while the graph y = f(x) + b has been translated vertically by b. Translated graph of a function.png
Compared to the graph y = f(x), the graph y = f(xa) has been translated horizontally by a, while the graph y = f(x)+b has been translated vertically by b.

The graph of a real function f, the set of points , is often pictured in the real coordinate plane with x as the horizontal coordinate and as the vertical coordinate.

Starting from the graph of f, a horizontal translation means composing f with a function , for some constant number a, resulting in a graph consisting of points . Each point of the original graph corresponds to the point in the new graph, which pictorially results in a horizontal shift.

A vertical translation means composing the function with f, for some constant b, resulting in a graph consisting of the points . Each point of the original graph corresponds to the point in the new graph, which pictorially results in a vertical shift. [3]

For example, taking the quadratic function , whose graph is a parabola with vertex at , a horizontal translation 5 units to the right would be the new function whose vertex has coordinates . A vertical translation 3 units upward would be the new function whose vertex has coordinates .

The antiderivatives of a function all differ from each other by a constant of integration and are therefore vertical translates of each other. [4]

Applications

Vehicle dynamics

For describing vehicle dynamics (or movement of any rigid body), including ship dynamics and aircraft dynamics, it is common to use a mechanical model consisting of six degrees of freedom, which includes translations along three reference axes, as well as rotations about those three axes.

These translations are often called:

The corresponding rotations are often called:

See also

Related Research Articles

<span class="mw-page-title-main">Cauchy–Riemann equations</span> Chacteristic property of holomorphic functions

In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">2D computer graphics</span> Computer-based generation of digital images

2D computer graphics is the computer-based generation of digital images—mostly from two-dimensional models and by techniques specific to them. It may refer to the branch of computer science that comprises such techniques or to the models themselves.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

<span class="mw-page-title-main">3D projection</span> Design technique

A 3D projection is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In affine geometry, uniform scaling is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions. The result of uniform scaling is similar to the original. A scale factor of 1 is normally allowed, so that congruent shapes are also classed as similar. Uniform scaling happens, for example, when enlarging or reducing a photograph, or when creating a scale model of a building, car, airplane, etc.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Total least squares</span>

In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models.

Screw theory is the algebraic calculation of pairs of vectors, such as angular and linear velocity, or forces and moments, that arise in the kinematics and dynamics of rigid bodies.

<span class="mw-page-title-main">Real coordinate space</span> Space formed by the n-tuples of real numbers

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted Rn or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors. Special cases are called the real lineR1, the real coordinate planeR2, and the real coordinate three-dimensional spaceR3. With component-wise addition and scalar multiplication, it is a real vector space.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

The transmission-line matrix (TLM) method is a space and time discretising method for computation of electromagnetic fields. It is based on the analogy between the electromagnetic field and a mesh of transmission lines. The TLM method allows the computation of complex three-dimensional electromagnetic structures and has proven to be one of the most powerful time-domain methods along with the finite difference time domain (FDTD) method. The TLM was first explored by Raymond Beurle while working at English Electric Valve Company in Chelmsford. After he had been appointed professor of electrical engineering at the University of Nottingham in 1963 he jointly authored an article, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix", with Peter B. Johns in 1971.

References

  1. Edmund Taylor Whittaker (1988). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Reprint of fourth edition of 1936 with foreword by William McCrea ed.). Cambridge University Press. p. 1. ISBN   0-521-35883-3.
  2. Richard Paul, 1981, Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators, MIT Press, Cambridge, MA
  3. Dougherty, Edward R.; Astol, Jaakko (1999), Nonlinear Filters for Image Processing, SPIE/IEEE series on imaging science & engineering, vol. 59, SPIE Press, p. 169, ISBN   9780819430335 .
  4. Zill, Dennis; Wright, Warren S. (2009), Single Variable Calculus: Early Transcendentals, Jones & Bartlett Learning, p. 269, ISBN   9780763749651 .

Further reading